1887

Abstract

A novel obligately anaerobic, non-spore-forming, rod-shaped, non-motile Gram-reaction-negative bacterium was isolated from infant faeces. The strain, designated NSB1, was able to grow on rich media at 30–37 °C, in the presence of up to 2 % (w/v) Oxgall and 2 % (w/v) NaCl. Cells of strain NSB1 produced catalase, but not urease and indole. Aesculin was not hydrolysed. The strain was able to utilize -glucose, lactose, maltose, mannose and raffinose as electron donors. When grown on -glucose, the main metabolic end products were propionic and acetic acids, with a minor product being succinic acid. The major cellular fatty acids, iso-C and anteiso-C, were present at a 1 : 1 molar ratio. The major menaquinone was MK-11. The DNA G+C content was found to be 38.5 mol%. According to 16S rRNA gene sequence analysis strain NSB1 is a member of the family , phylum . The closest relatives of the strain were (88.2 % identity) and (87.4 % identity). On the basis of phenotypic and genotypic properties of strain NSB1 we conclude that this strain represent a novel species in a new genus within the family of for which the name gen. nov., sp. nov. is proposed. The type strain of the species is NSB1 ( = DSM 26242, = VKM B-2743).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052126-0
2013-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4181.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052126-0&mimeType=html&fmt=ahah

References

  1. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D. R., Fernandes G. R., Tap J., Bruls T.. & other authors ( 2011;). Enterotypes of the human gut microbiome. . Nature 473:, 174–180. [CrossRef][PubMed]
    [Google Scholar]
  2. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. . In Methods in Microbiology, vol. 18, pp. 329–366. Edited by Gottschalk G... New York:: Academic Press;.
    [Google Scholar]
  3. Costello E. K., Lauber C. L., Hamady M., Fierer N., Gordon J. I., Knight R.. ( 2009;). Bacterial community variation in human body habitats across space and time. . Science 326:, 1694–1697. [CrossRef][PubMed]
    [Google Scholar]
  4. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A.. ( 2005;). Diversity of the human intestinal microbial flora. . Science 308:, 1635–1638. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: An approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Grabowski A., Tindall B. J., Bardin V., Blanchet D., Jeanthon C.. ( 2005;). Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. . Int J Syst Evol Microbiol 55:, 1113–1121. [CrossRef][PubMed]
    [Google Scholar]
  7. Hardham J. M., King K. W., Dreier K., Wong J., Strietzel C., Eversole R. R., Sfintescu C., Evans R. T.. ( 2008;). Transfer of Bacteroides splanchnicus to Odoribacter gen. nov. as Odoribacter splanchnicus comb. nov., and description of Odoribacter denticanis sp. nov., isolated from the crevicular spaces of canine periodontitis patients. . Int J Syst Evol Microbiol 58:, 103–109. [CrossRef][PubMed]
    [Google Scholar]
  8. Hofstad T., Olsen I., Eribe E. R., Falsen E., Collins M. D., Lawson P. A.. ( 2000;). Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). . Int J Syst Evol Microbiol 50:, 2189–2195. [CrossRef][PubMed]
    [Google Scholar]
  9. Holdeman L. V., Cato E. P., Moore W. E. C.. ( 1977;). Anaerobe Laboratory Manual, , 4th edn.. Blacksburg, VA:: Virginia Polytechnic Institute and State University;.
    [Google Scholar]
  10. Jabari L., Gannoun H., Cayol J. L., Hedi A., Sakamoto M., Falsen E., Ohkuma M., Hamdi M., Fauque G.. & other authors ( 2012;). Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters. . Int J Syst Evol Microbiol 62:, 2522–2527. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  12. Kulagina E. V., Efimov B. A., Maximov P. Y., Kafarskaia L. I., Chaplin A. V., Shkoporov A. N.. ( 2012;). Species composition of Bacteroidales order bacteria in the feces of healthy people of various ages. . Biosci Biotechnol Biochem 76:, 169–171. [CrossRef][PubMed]
    [Google Scholar]
  13. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  14. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I.. ( 2006;). Microbial ecology: human gut microbes associated with obesity. . Nature 444:, 1022–1023. [CrossRef][PubMed]
    [Google Scholar]
  15. Li E., Hamm C. M., Gulati A. S., Sartor R. B., Chen H., Wu X., Zhang T., Rohlf F. J., Zhu W.. & other authors ( 2012;). Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. . PLoS ONE 7:, e26284. [CrossRef][PubMed]
    [Google Scholar]
  16. Morotomi M., Nagai F., Sakon H., Tanaka R.. ( 2008;). Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 58:, 2716–2720. [CrossRef][PubMed]
    [Google Scholar]
  17. O’Hara A. M., Shanahan F.. ( 2006;). The gut flora as a forgotten organ. . EMBO Rep 7:, 688–693. [CrossRef][PubMed]
    [Google Scholar]
  18. Rautio M., Eerola E., Väisänen-Tunkelrott M. L., Molitoris D., Lawson P., Collins M. D., Jousimies-Somer H.. ( 2003;). Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. . Syst Appl Microbiol 26:, 182–188. [CrossRef][PubMed]
    [Google Scholar]
  19. Reynolds E. S.. ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. . J Cell Biol 17:, 208–212. [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Sakamoto M., Benno Y.. ( 2006;). Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov.. Int J Syst Evol Microbiol 56:, 1599–1605. [CrossRef][PubMed]
    [Google Scholar]
  22. Sakamoto M., Ohkuma M.. ( 2010;). Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. . J Med Microbiol 59:, 1293–1302. [CrossRef][PubMed]
    [Google Scholar]
  23. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y.. ( 2002;). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov.. Int J Syst Evol Microbiol 52:, 841–849. [CrossRef][PubMed]
    [Google Scholar]
  24. Sakamoto M., Huang Y., Umeda M., Ishikawa I., Benno Y.. ( 2005;). Prevotella multiformis sp. nov., isolated from human subgingival plaque. . Int J Syst Evol Microbiol 55:, 815–819. [CrossRef][PubMed]
    [Google Scholar]
  25. Sakamoto M., Lan P. T., Benno Y.. ( 2007;). Barnesiella viscericola gen. nov., sp. nov., a novel member of the family Porphyromonadaceae isolated from chicken caecum. . Int J Syst Evol Microbiol 57:, 342–346. [CrossRef][PubMed]
    [Google Scholar]
  26. Sakamoto M., Takagaki A., Matsumoto K., Kato Y., Goto K., Benno Y.. ( 2009;). Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. . Int J Syst Evol Microbiol 59:, 1748–1753. [CrossRef][PubMed]
    [Google Scholar]
  27. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  28. Shcherbakova V. A., Chuvilskaya N. A., Rivkina E. M., Pecheritsyna S. A., Laurinavichius K. S., Suzina N. E., Osipov G. A., Lysenko A. M., Gilichinsky D. A., Akimenko V. K.. ( 2005;). Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov.. Extremophiles 9:, 239–246. [CrossRef][PubMed]
    [Google Scholar]
  29. Sonoki S., Hisamatsu S., Kiuchi A.. ( 1993;). High-performance liquid chromatographic determination of DNA base composition with fluorescence detection. . Nucleic Acids Res 21:, 2776. [CrossRef][PubMed]
    [Google Scholar]
  30. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  32. Turner S., Pryer K. M., Miao V. P., Palmer J. D.. ( 1999;). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. . J Eukaryot Microbiol 46:, 327–338. [CrossRef][PubMed]
    [Google Scholar]
  33. Ueki A., Akasaka H., Suzuki D., Ueki K.. ( 2006;). Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. . Int J Syst Evol Microbiol 56:, 39–44. [CrossRef][PubMed]
    [Google Scholar]
  34. Willems A., Collins M. D.. ( 1995;). Reclassification of Oribaculum catoniae (Moore and Moore 1994) as Porphyromonas catoniae comb. nov. and emendation of the genus Porphyromonas. . Int J Syst Bacteriol 45:, 578–581. [CrossRef][PubMed]
    [Google Scholar]
  35. Wylie K. M., Truty R. M., Sharpton T. J., Mihindukulasuriya K. A., Zhou Y., Gao H., Sodergren E., Weinstock G. M., Pollard K. S.. ( 2012;). Novel bacterial taxa in the human microbiome. . PLoS ONE 7:, e35294. [CrossRef][PubMed]
    [Google Scholar]
  36. Zhao F., Bi X., Hao Y., Liao X.. ( 2013;). Induction of viable but nonculturable Escherichia coli O157:H7 by high pressure CO2 and its characteristics. . PLoS ONE 8:, e62388. [CrossRef][PubMed]
    [Google Scholar]
  37. Zhilina T. N., Zavarzina D. G., Panteleeva A. N., Osipov G. A., Kostrikina N. A., Tourova T. P., Zavarzin G. A.. ( 2012;). Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. . Int J Syst Evol Microbiol 62:, 1666–1673. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052126-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052126-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error