sp. nov., isolated from a pyrene-degrading microbial enrichment, and emended description of the genus Free

Abstract

A novel pyrene-degrading, Gram-negative bacterium, designated strain P-4, was isolated from a polycyclic aromatic hydrocarbon-degrading enrichment of polluted soils from a coking chemical plant. Cells of strain P-4 were non-motile rods. Strain P-4 grew at 15–45 °C (optimum, 37 °C), pH 6.0–10.0 (optimum, pH 8.5) and 0–4 % (w/v) NaCl. Analysis of the 16S rRNA gene sequence showed that strain P-4 was related phylogenetically to members of the genus , with sequence similarity of 93.7–95.1 %. The cellular fatty acids of strain P-4 were iso-C, summed feature 3 (Cω7 and/or Cω6), iso-C 3-OH, summed feature 9 (iso-Cω9c and/or 10-methyl C ), anteiso-C, iso-C 3-OH, C, iso-C G, C 3-OH and C 2-OH. Cells contained menaquinone 7 as the major quinone. The polyamine of strain P-4 was homospermidine, and the main polar lipids were phosphatidylethanolamine and a sphingolipid. The G+C content of the DNA was 45.4 mol%. Strain P-4 showed a range of phenotypic characteristics that differentiated it from previously recognized species, particularly its ability to use pyrene as a sole carbon source for growth and its alkaline optimal pH for growth (pH 8.5). On the basis of these results, it is concluded that strain P-4 represents a novel species of the genus , for which the name (type strain P-4 = NBRC 109113 = CGMCC 1.12195) is proposed. An emended description of the genus is also provided.

Funding
This study was supported by the:
  • National Nature Science Foundation of China (Award 31230003)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051938-0
2013-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/3994.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051938-0&mimeType=html&fmt=ahah

References

  1. Busse H. J., Bunka S., Hensel A., Lubitz W. ( 1997 ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47, 698708. [View Article]
    [Google Scholar]
  2. Collins M. D. ( 1985 ). Isoprenoid quinone analysis in bacterial classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267287. Edited by Goodfellow M., Minnikin D. E. . London:: Academic Press;.
    [Google Scholar]
  3. Dittmer J. C., Lester R. L. ( 1964 ). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. . J Lipid Res 5, 126127.[PubMed]
    [Google Scholar]
  4. Dong X. Z., Cai M. Y. ( 2001 ). In Determinative Manual for Routine Bacteriology. , pp. 370390. Beijing:: Scientific Press (English translation);.
    [Google Scholar]
  5. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. ( 1994 ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Hamana K., Matsuzaki S. ( 1992 ). Polyamines as a chemotaxonomic marker in bacterial systematics. . Crit Rev Microbiol 18, 261283. [View Article] [PubMed]
    [Google Scholar]
  7. Kamekura M. ( 1993 ). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135161. Edited by Vreeland R. H., Hochstein L. I. . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  8. Kim M. K., Na J. R., Cho D. H., Soung N. K., Yang D. C. ( 2007 ). Parapedobacter koreensis gen. nov., sp. nov.. Int J Syst Evol Microbiol 57, 13361341. [View Article] [PubMed]
    [Google Scholar]
  9. Kim M. K., Kim Y. A., Kim Y. J., Soung N. K., Yi T. H., Kim S. Y., Yang D. C. ( 2008 ). Parapedobacter soli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 58, 337340. [View Article] [PubMed]
    [Google Scholar]
  10. Kim S. J., Weon H. Y., Kim Y. S., Yoo S. H., Kim B. Y., Anandham R., Kwon S. W. ( 2010 ). Parapedobacter luteus sp. nov. and Parapedobacter composti sp. nov., isolated from cotton waste compost. . Int J Syst Evol Microbiol 60, 18491853. [View Article] [PubMed]
    [Google Scholar]
  11. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [View Article] [PubMed]
    [Google Scholar]
  12. Konopka A. ( 1993 ). Isolation and characterization of a subsurface bacterium that degrades aniline and methylanilines. . FEMS Microbiol Lett 111, 9399. [View Article]
    [Google Scholar]
  13. Li X., Zhang M., Jin J., Liu S., Jiang C. ( 2012 ). [Population shift and degrading characteristics of a pyrene-degrading bacterial consortium during incubation process]. . Wei Sheng Wu Xue Bao 52, 12601267 (in Chinese).[PubMed]
    [Google Scholar]
  14. Marmur J., Doty P. ( 1962 ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5, 109118. [View Article] [PubMed]
    [Google Scholar]
  15. Ntougias S., Fasseas C., Zervakis G. I. ( 2007 ). Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete. . Int J Syst Evol Microbiol 57, 398404. [View Article] [PubMed]
    [Google Scholar]
  16. Reasoner D. J., Geldreich E. E. ( 1985 ). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49, 17.[PubMed]
    [Google Scholar]
  17. Ross H. N. M., Collins M. D., Tindall B. J., Grant W. D. ( 1981 ). A rapid procedure for the detection of archaebacterial lipids in halophilic bacteria. . J Gen Microbiol 123, 7580.
    [Google Scholar]
  18. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. ( 1998 ). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48, 165177. [View Article] [PubMed]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S. ( 2007 ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24, 15961599. [View Article] [PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  21. Walter U., Beyer M., Klein J., Rehm H.-J. ( 1991 ). Degradation of pyrene by Rhodococcus sp. UW1. . Appl Microbiol Biotechnol 34, 671676. [View Article]
    [Google Scholar]
  22. Worliczek H. L., Kämpfer P., Rosengarten R., Tindall B. J., Busse H. J. ( 2007 ). Polar lipid and fatty acid profiles – re-vitalizing old approaches as a modern tool for the classification of mycoplasmas?. Syst Appl Microbiol 30, 355370. [View Article] [PubMed]
    [Google Scholar]
  23. Wu C., Lu X., Qin M., Wang Y., Ruan J. ( 1989 ). Analysis of menaquinone compound in microbial cells by HPLC. . [Microbiology (English translation of Microbiology (Beijing)] 16, 176178.
    [Google Scholar]
  24. Xin H. W., Itoh T., Zhou P. J., Suzuki K., Nakase T. ( 2001 ). Natronobacterium nitratireducens sp. nov., a haloalkaliphilic archaeon isolated from a soda lake in China. . Int J Syst Evol Microbiol 51, 18251829. [View Article] [PubMed]
    [Google Scholar]
  25. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. ( 1983 ). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. . Int J Syst Bacteriol 33, 580598. [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051938-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051938-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed