1887

Abstract

Phytoplasmas are classified into 16Sr groups and subgroups and ‘ Phytoplasma ’ species, largely or entirely based on analysis of 16S rRNA gene sequences. Yet, distinctions among closely related ‘ Phytoplasma ’ species and strains based on 16S rRNA genes alone have limitations imposed by the high degree of rRNA nucleotide sequence conservation across diverse phytoplasma lineages and by the presence in a phytoplasma genome of two, sometimes sequence-heterogeneous, copies of the 16S rRNA gene. Since the DNA-dependent RNA polymerase (DpRp) β-subunit gene () exists as a single copy in the phytoplasma genome, we explored the use of for phytoplasma classification and phylogenetic analysis. We sequenced a clover phyllody (CPh) phytoplasma genetic locus containing ribosomal protein genes, a complete gene and a partial gene encoding the β′-subunit of DpRp. Primers and reaction conditions were designed for PCR-mediated amplification of gene fragments from diverse phytoplasmas. The gene sequences from phytoplasmas classified in groups 16SrI, 16SrII, 16SrIII, 16SrX and 16SrXII were subjected to sequence similarity and phylogenetic analyses. The gene sequences were more variable than 16S rRNA gene sequences, more clearly distinguishing among phytoplasma lineages. Phylogenetic trees based on 16S rRNA and gene sequences had similar topologies, and branch lengths in the tree facilitated distinctions among closely related phytoplasmas. Virtual RFLP analysis of gene sequences also improved distinctions among closely related lineages. The results indicate that the gene provides a useful additional marker for phytoplasma classification that should facilitate studies of disease aetiology and epidemiology.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051912-0
2013-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3904.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051912-0&mimeType=html&fmt=ahah

References

  1. Borukhov S., Nudler E.. ( 2003;). RNA polymerase holoenzyme: structure, function and biological implications. . Curr Opin Microbiol 6:, 93–100. [CrossRef][PubMed]
    [Google Scholar]
  2. Dahllöf I., Baillie H., Kjelleberg S.. ( 2000;). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. . Appl Environ Microbiol 66:, 3376–3380. [CrossRef][PubMed]
    [Google Scholar]
  3. Davis R. E., Lee I.-M.. ( 2000;). Phytoplasma. . In Encyclopedia of Microbiology, , 2nd edn., pp. 640–646. Edited by Lederberg J., Alexander M., Bloom B. R., Hopwood D., Hull R., Iglewiski B. H., Laskin A. I., Oliver S. G., Schaechter M., Summers W. C... New York:: Academic Press;.
    [Google Scholar]
  4. Davis R. E., Jomantiene R., Zhao Y., Dally E. L.. ( 2003;). Folate biosynthesis pseudogenes, ψfolP and ψfolK, and an O-sialoglycoprotein endopeptidase gene homolog in the phytoplasma genome. . DNA Cell Biol 22:, 697–706. [CrossRef][PubMed]
    [Google Scholar]
  5. Davis R. E., Zhao Y., Dally E. L., Lee I.-M., Jomantiene R., Douglas S. M.. ( 2013;). ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. . Int J Syst Evol Microbiol 63:, 766–776. [CrossRef][PubMed]
    [Google Scholar]
  6. Deng S., Hiruki C.. ( 1991;). Amplification of 16S rRNA genes from culturable and non-culturable mollicutes. . J Microbiol Methods 14:, 53–61. [CrossRef]
    [Google Scholar]
  7. Drancourt M., Raoult D.. ( 2002;). rpoB gene sequence-based identification of Staphylococcus species. . J Clin Microbiol 40:, 1333–1338. [CrossRef][PubMed]
    [Google Scholar]
  8. Ellerbrok H., Nattermann H., Özel M., Beutin L., Appel B., Pauli G.. ( 2002;). Rapid and sensitive identification of pathogenic and apathogenic Bacillus anthracis by real-time PCR. . FEMS Microbiol Lett 214:, 51–59. [CrossRef][PubMed]
    [Google Scholar]
  9. Gaget V., Gribaldo S., Tandeau de Marsac N.. ( 2011;). An rpoB signature sequence provides unique resolution for the molecular typing of cyanobacteria. . Int J Syst Evol Microbiol 61:, 170–183. [CrossRef][PubMed]
    [Google Scholar]
  10. Gundersen D. E., Lee I.-M.. ( 1996;). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. . Phytopathol Mediterr 35:, 143–151.
    [Google Scholar]
  11. Hodgetts J., Boonham N., Mumford R., Harrison N., Dickinson M.. ( 2008;). Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. . Int J Syst Evol Microbiol 58:, 1826–1837. [CrossRef][PubMed]
    [Google Scholar]
  12. IRPCM Phytoplasma/Spiroplasma Working Team--Phytoplasma Taxonomy Group ( 2004;). Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. . Int J Syst Evol Microbiol 54:, 1243–1255. [CrossRef][PubMed]
    [Google Scholar]
  13. Iyer L. M., Koonin E. V., Aravind L.. ( 2003;). Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. . BMC Struct Biol 3:, 1–23. [CrossRef][PubMed]
    [Google Scholar]
  14. Jomantiene R., Davis R. E., Valiunas D.. ( 2005;). Phylogenetic relationships of phytoplasmas inferred from analysis of DNA-directed RNA polymerase beta subunit, RpoB. . Phytopathology 95:, S169.
    [Google Scholar]
  15. Kim B.-J., Lee S.-H., Lyu M.-A., Kim S.-J., Bai G.-H., Kim S.-J., Chae G. T., Kim E. C., Cha C. Y., Kook Y.-H.. ( 1999;). Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). . J Clin Microbiol 37:, 1714–1720.[PubMed]
    [Google Scholar]
  16. Kim K.-S., Ko K. S., Chang M.-W., Hahn T. W., Hong S. K., Kook Y.-H.. ( 2003;). Use of rpoB sequences for phylogenetic study of Mycoplasma species. . FEMS Microbiol Lett 226:, 299–305. [CrossRef][PubMed]
    [Google Scholar]
  17. Ko K. S., Lee H. K., Park M.-Y., Lee K.-H., Yun Y.-J., Woo S.-Y., Miyamoto H., Kook Y.-H.. ( 2002;). Application of RNA polymerase β-subunit gene (rpoB) sequences for the molecular differentiation of Legionella species. . J Clin Microbiol 40:, 2653–2658. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee I.-M., Davis R. E.. ( 1983;). Phloem-limited prokaryotes in sieve elements isolated by enzyme treatment of diseased plant tissues. . Phytopathology 73:, 1540–1543. [CrossRef]
    [Google Scholar]
  19. Lee I.-M., Davis R. E.. ( 1988;). Detection and investigation of genetic relatedness among aster yellows and other mycoplasma-like organisms by using cloned DNA and RNA probes. . Mol Plant Microbe Interact 1:, 303–310. [CrossRef]
    [Google Scholar]
  20. Lee I.-M., Gundersen-Rindal D. E., Davis R. E., Bartoszyk I. M.. ( 1998;). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. . Int J Syst Bacteriol 48:, 1153–1169. [CrossRef]
    [Google Scholar]
  21. Lee S.-H., Kim B.-J., Kim J.-H., Park K.-H., Kim S.-J., Kook Y.-H.. ( 2000;). Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene (rpoB) sequences. . J Clin Microbiol 38:, 2557–2562.[PubMed]
    [Google Scholar]
  22. Lee I.-M., Gundersen-Rindal D. E., Davis R. E., Bottner K. D., Marcone C., Seemüller E.. ( 2004;). Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. . Int J Syst Evol Microbiol 54:, 1037–1048. [CrossRef][PubMed]
    [Google Scholar]
  23. Lee I.-M., Bottner-Parker K. D., Zhao Y., Davis R. E., Harrison N. A.. ( 2010;). Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. . Int J Syst Evol Microbiol 60:, 2887–2897. [CrossRef][PubMed]
    [Google Scholar]
  24. Makarova O., Contaldo N., Paltrinieri S., Kawube G., Bertaccini A., Nicolaisen M.. ( 2012;). DNA barcoding for identification of ‘Candidatus Phytoplasmas’ using a fragment of the elongation factor Tu gene. . PLoS ONE 7:, e52092. [CrossRef][PubMed]
    [Google Scholar]
  25. Manso-Silván L., Perrier X., Thiaucourt F.. ( 2007;). Phylogeny of the Mycoplasma mycoides cluster based on analysis of five conserved protein-coding sequences and possible implications for the taxonomy of the group. . Int J Syst Evol Microbiol 57:, 2247–2258. [CrossRef][PubMed]
    [Google Scholar]
  26. Marcone C., Lee I.-M., Davis R. E., Ragozzino A., Seemüller E.. ( 2000;). Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. . Int J Syst Evol Microbiol 50:, 1703–1713.[PubMed]
    [Google Scholar]
  27. Martini M., Lee I.-M., Bottner K. D., Zhao Y., Botti S., Bertaccini A., Harrison N. A., Carraro L., Marcone C.. & other authors ( 2007;). Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. . Int J Syst Evol Microbiol 57:, 2037–2051. [CrossRef][PubMed]
    [Google Scholar]
  28. Martini M., Marcone C., Mitrović J., Maixner M., Delić D., Myrta A., Ermacora P., Bertaccini A., Duduk B.. ( 2012;). Candidatus Phytoplasma convolvuli’, a new phytoplasma taxon associated with bindweed yellows in four European countries. . Int J Syst Evol Microbiol 62:, 2910–2915. [CrossRef][PubMed]
    [Google Scholar]
  29. Mitrović J., Kakizawa S., Duduk B., Oshima K., Namba S., Bertaccini A.. ( 2011;). The groEL gene as an additional marker for finer differentiation of ‘Candidatus Phytoplasma asteris’-related strains. . Ann Appl Biol 159:, 41–48. [CrossRef]
    [Google Scholar]
  30. Mollet C., Drancourt M., Raoult D.. ( 1997;). rpoB sequence analysis as a novel basis for bacterial identification. . Mol Microbiol 26:, 1005–1011. [CrossRef][PubMed]
    [Google Scholar]
  31. Murakami K. S., Darst S. A.. ( 2003;). Bacterial RNA polymerases: the whole story. . Curr Opin Struct Biol 13:, 31–39. [CrossRef][PubMed]
    [Google Scholar]
  32. Narongwanichgarn W., Misawa N., Jin J. H., Amoako K. K., Kawaguchi E., Shinjo T., Haga T., Goto Y.. ( 2003;). Specific detection and differentiation of two subspecies of Fusobacterium necrophorum by PCR. . Vet Microbiol 91:, 183–195. [CrossRef][PubMed]
    [Google Scholar]
  33. Page R. D.. ( 1996;). TreeView: an application to display phylogenetic trees on personal computers. . Comput Appl Biosci 12:, 357–358.[PubMed]
    [Google Scholar]
  34. Quaglino F., Zhao Y., Casati P., Bulgari D., Bianco P. A., Wei W., Davis R. E.. ( 2013;). Candidatus Phytoplasma solani’, a novel taxon associated with stolbur- and bois noir-related diseases of plants. . Int J Syst Evol Microbiol 63:, 2879–2894. [CrossRef][PubMed]
    [Google Scholar]
  35. Renesto P., Gouvernet J., Drancourt M., Roux V., Raoult D.. ( 2001;). Use of rpoB gene analysis for detection and identification of Bartonella species. . J Clin Microbiol 39:, 430–437. [CrossRef][PubMed]
    [Google Scholar]
  36. Schneider B., Seemüller E., Smart C. D., Kirkpatrick B. C.. ( 1995;). Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. . In Molecular and Diagnostic Procedures in Mycoplasmology, vol. 1, pp. 369–380. Edited by Razin S., Tully J. G... San Diego:: Academic Press;.
    [Google Scholar]
  37. Schneider B., Gibb K. S., Seemüller E.. ( 1997;). Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. . Microbiology 143:, 3381–3389. [CrossRef][PubMed]
    [Google Scholar]
  38. Shao J., Jomantiene R., Dally E. L., Zhao Y., Lee I.-M., Nuss D. L., Davis R. E.. ( 2006;). Phylogeny and characterization of phytoplasmal NusA and use of the nusA gene in detection of group 16SrI strains. . J Plant Pathol 88:, 193–201.
    [Google Scholar]
  39. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  40. Wei W., Davis R. E., Lee I.-M., Zhao Y.. ( 2007;). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. . Int J Syst Evol Microbiol 57:, 1855–1867. [CrossRef][PubMed]
    [Google Scholar]
  41. Wei W., Cai H., Jiang Y., Lee I.-M., Davis R. E., Ding Y., Yuan E., Chen H., Zhao Y.. ( 2011;). A new phytoplasma associated with little leaf disease in azalea: multilocus sequence characterization reveals a distinct lineage within the aster yellows phytoplasma group. . Ann Appl Biol 158:, 318–330. [CrossRef]
    [Google Scholar]
  42. Zhao Y., Sun Q., Wei W., Davis R. E., Wu W., Liu Q.. ( 2009a;). Candidatus Phytoplasma tamaricis’, a novel taxon discovered in witches’-broom-diseased salt cedar (Tamarix chinensis Lour.). . Int J Syst Evol Microbiol 59:, 2496–2504. [CrossRef][PubMed]
    [Google Scholar]
  43. Zhao Y., Wei W., Lee I.-M., Shao J., Suo X., Davis R. E.. ( 2009b;). Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). . Int J Syst Evol Microbiol 59:, 2582–2593. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051912-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051912-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error