1887

Abstract

A novel anaerobic, chemo-organotrophic, sulfate-reducing bacterium, designated strain Olac 40, was isolated from a Tunisian wastewater digestor. Cells were curved, motile rods or vibrios (5.0–7.0×0.5 µm). Strain Olac 40 grew at temperatures between 15 and 50 °C (optimum 40 °C), and between pH 5.0 and 9.0 (optimum pH 7.1). It did not require NaCl for growth but tolerated it up to 50 g l (optimum 2 g l). In the presence of sulfate or thiosulfate, strain Olac 40 used lactate, pyruvate and formate as energy sources. Growth was observed on H only in the presence of acetate as carbon source. In the presence of sulfate or thiosulfate, the end products of lactate oxidation were acetate, sulfide and CO. Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate or nitrite. The genomic DNA G+C content of strain Olac 40 was 70 mol%. The profile of polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid and four phospholipids. The main fatty acids were C, anteiso-C and iso-C. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Olac 40 was affiliated with the family within the class . On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain Olac 40 is proposed to be assigned to a novel species of the genus , for which the name is proposed. The type strain is Olac 40 ( = DSM 26129 = JCM 18546).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051664-0
2013-11-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4237.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051664-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. ( 1979;). Methanogens: reevaluation of a unique biological group. . Microbiol Rev 43:, 260–296.[PubMed]
    [Google Scholar]
  3. Barton L. L., Fauque G. D.. ( 2009;). Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. . Adv Appl Microbiol 68:, 41–98. [CrossRef][PubMed]
    [Google Scholar]
  4. Basso O., Lascourreges J.-F., Le Borgne F., Le Goff C., Magot M.. ( 2009;). Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer. . Res Microbiol 160:, 107–116. [CrossRef][PubMed]
    [Google Scholar]
  5. Ben-Dov E., Brenner A., Kushmaro A.. ( 2007;). Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. . Microb Ecol 54:, 439–451. [CrossRef][PubMed]
    [Google Scholar]
  6. Birkeland N.-K.. ( 2005;). Sulfate-reducing bacteria and archaea. . In Petroleum Microbiology, pp. 35–54. Edited by Ollivier B., Magot M... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  8. Cord-Ruwisch R.. ( 1985;). A quick method for determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. . J Microbiol Methods 4:, 33–36. [CrossRef]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  10. Dinh H. T., Kuever J., Mußmann M., Hassel A. W., Stratmann M., Widdel F.. ( 2004;). Iron corrosion by novel anaerobic microorganisms. . Nature 427:, 829–832. [CrossRef][PubMed]
    [Google Scholar]
  11. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  12. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F. S., Garcia J.-L.. ( 1997;). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. . Int J Syst Bacteriol 47:, 1013–1019. [CrossRef][PubMed]
    [Google Scholar]
  13. Fardeau M.-L., Magot M., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B.. ( 2000;). Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. . Int J Syst Evol Microbiol 50:, 2141–2149. [CrossRef][PubMed]
    [Google Scholar]
  14. Fauque G. D., Barton L. L.. ( 2012;). Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes. . In Advances in Microbial Physiology, vol. 60, pp. 1–90. Edited by Poole R. K... Burlington:: Elsevier;. [CrossRef]
    [Google Scholar]
  15. Fauque G., Ollivier B.. ( 2004;). Anaerobes: The sulfate-reducing bacteria as an exemple of metabolic diversity. . In Microbial Diversity and Bioprospecting, pp. 169–176. Edited by Bull A. T... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  16. Fauque G., LeGall J., Barton L. L.. ( 1991;). Sulfate-reducing and sulfur-reducing bacteria. . In Variations in Autotrophic Life, pp. 271–337. Edited by Shively J. M., Barton L. L... London:: Academic Press;.
    [Google Scholar]
  17. Hungate R. E.. ( 1969;). A roll tube method for the cultivation of strict anaerobes. . Methods Microbiol 3B:, 117–132. [CrossRef]
    [Google Scholar]
  18. Huß V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  19. Jørgensen B. B.. ( 1977;). The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). . Limnol Oceanogr 22:, 814–832. [CrossRef]
    [Google Scholar]
  20. Khelifi N., Ben Romdhane E., Hedi A., Postec A., Fardeau M.-L., Hamdi M., Tholozan J.-L., Ollivier B., Hirschler-Réa A.. ( 2010;). Characterization of Microaerobacter geothermalis gen. nov., sp. nov., a novel microaerophilic, nitrate- and nitrite-reducing thermophilic bacterium isolated from a terrestrial hot spring in Tunisia. . Extremophiles 14:, 297–304. [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  22. Klouche N., Basso O., Lascourrèges J.-F., Cayol J.-L., Thomas P., Fauque G., Fardeau M.-L., Magot M.. ( 2009;). Desulfocurvus vexinensis gen. nov., sp. nov., a sulfate-reducing bacterium isolated from a deep subsurface aquifer. . Int J Syst Evol Microbiol 59:, 3100–3104. [CrossRef][PubMed]
    [Google Scholar]
  23. Kuever J., Rainey F. A., Widdel F.. ( 2005;). Genus I. Desulfovibrio. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, Part C, pp. 926–938. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  24. Kuykendall L. D., Roy M. A., O’Neil J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and desoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  26. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  27. Muyzer G., Stams A. J.. ( 2008;). The ecology and biotechnology of sulphate-reducing bacteria. . Nat Rev Microbiol 6:, 441–454.[PubMed]
    [Google Scholar]
  28. Ollivier B., Guyot F.. ( 2009;). Sulfate-reducing bacteria: a deep biosphere early-life connection?. Environ Microbiol Rep 1:, 14–16.
    [Google Scholar]
  29. Ollivier B., Cayol J. L., Fauque G.. ( 2007;). Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents. . In Sulphate-Reducing Bacteria: Environmental and Engineered Systems, pp. 305–328. Edited by Barton L. L., Hamilton W. A... Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  30. Postgate J. R.. ( 1956;). Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. . J Gen Microbiol 14:, 545–572. [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  32. Tsu I.-H., Huang C.-Y., Garcia J.-L., Patel B. K. C., Cayol J.-L., Baresi L., Mah R. A.. ( 1998;). Isolation and characterization of desulfovibrio senezii sp. nov., A halotolerant sulfate reducer from a solar saltern and phylogenetic confirmation of desulfovibrio fructosovorans as a new species. . Arch Microbiol 170:, 313–317. [CrossRef][PubMed]
    [Google Scholar]
  33. Widdel F., Pfennig N.. ( 1982;). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov.. Arch Microbiol 131:, 360–365. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051664-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051664-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error