1887

Abstract

A novel bacterium was isolated from a freshwater hot spring, the Hale House Spring, located at Hot Springs National Park, Hot Springs, AR, USA. Cells of strain MP-01 stained Gram-negative, were rod-shaped, non-motile, strictly anaerobic and chemo-organotrophic and did not form spores. Growth occurred at 50–65 °C, with an optimum at 60 °C, at pH 6.0–8.0, with an optimum at pH 6.5–7.0, and at NaCl concentrations up to 0.5 % (w/v), with optimum growth in the absence of NaCl. Strain MP-01 was capable of fermentative growth on pyruvate or proteinaceous substrates as well as reducing Fe(III) and Mn(IV). Major fatty acids were iso-C, iso-C, anteiso-C and iso-C. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine and the major isoprenoid quinone was MK-10. In the polyamine pattern, homospermidine was the predominant compound. The DNA G+C content was 62.7 mol%. Analysis of the 16S rRNA gene sequence of the isolate indicated that strain MP-01 represents the first reported cultivated member of subdivision 23 of the . It is proposed that strain MP-01 represents a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is MP-01 ( = DSM 24856 = JCM 18256).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051425-0
2013-11-01
2019-08-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4149.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051425-0&mimeType=html&fmt=ahah

References

  1. Araujo J. F., de Castro A. P., Costa M. M., Togawa R. C., Júnior G. J., Quirino B. F., Bustamante M. M., Williamson L., Handelsman J., Krüger R. H.. ( 2012;). Characterization of soil bacterial assemblies in Brazilian savanna-like vegetation reveals acidobacteria dominance. . Microb Ecol 64:, 760–770. [CrossRef][PubMed]
    [Google Scholar]
  2. Armstrong P. A., Lyons W. B., Gaudette H. E.. ( 1979;). Application of formaldoxime colorimetric method for the determination of manganese in the pore waters of anoxic marine sediments. . Estuaries 2:, 198–201. [CrossRef]
    [Google Scholar]
  3. Barns S. M., Takala S. L., Kuske C. R.. ( 1999;). Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. . Appl Environ Microbiol 65:, 1731–1737.[PubMed]
    [Google Scholar]
  4. Barns S. M., Cain E. C., Sommerville L., Kuske C. R.. ( 2007;). Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. . Appl Environ Microbiol 73:, 3113–3116. [CrossRef][PubMed]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  6. Bryant D. A., Costas A. M., Maresca J. A., Chew A. G., Klatt C. G., Bateson M. M., Tallon L. J., Hostetler J., Nelson W. C.. & other authors ( 2007;). Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. . Science 317:, 523–526. [CrossRef][PubMed]
    [Google Scholar]
  7. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  8. Cline J. D.. ( 1969;). Spectrophotometric determination of hydrogen sulfide in natural waters. . Limnol Oceanogr 14:, 454–458. [CrossRef]
    [Google Scholar]
  9. Coates J. D., Ellis D. J., Gaw C. V., Lovley D. R.. ( 1999;). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. . Int J Syst Bacteriol 49:, 1615–1622. [CrossRef][PubMed]
    [Google Scholar]
  10. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T.. & other authors ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37:, D141–D145. [CrossRef][PubMed]
    [Google Scholar]
  11. Dedysh S. N., Kulichevskaya I. S., Serkebaeva Y. M., Mityaeva M. A., Sorokin V. V., Suzina N. E., Rijpstra W. I. C., Sinninghe Damsté J. S.. ( 2012;). Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. . Int J Syst Evol Microbiol 62:, 654–664. [CrossRef][PubMed]
    [Google Scholar]
  12. DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L.. ( 2006;). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with arb. . Appl Environ Microbiol 72:, 5069–5072. [CrossRef][PubMed]
    [Google Scholar]
  13. Eichler B., Pfennig N.. ( 1988;). A new purple sulfur bacterium from stratified freshwater lakes, Amoebobacter purpureus sp. nov.. Arch Microbiol 149:, 395–400. [CrossRef]
    [Google Scholar]
  14. Eichorst S. A., Breznak J. A., Schmidt T. M.. ( 2007;). Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. . Appl Environ Microbiol 73:, 2708–2717. [CrossRef][PubMed]
    [Google Scholar]
  15. Foesel B. U., Rohde M., Overmann J.. ( 2013;). Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil – the first described species of Acidobacteria subdivision 4. . Syst Appl Microbiol 36:, 82–89. [CrossRef][PubMed]
    [Google Scholar]
  16. Fukunaga Y., Kurahashi M., Yanagi K., Yokota A., Harayama S.. ( 2008;). Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. . Int J Syst Evol Microbiol 58:, 2597–2601. [CrossRef][PubMed]
    [Google Scholar]
  17. Hanaichi T., Sato T., Iwamoto T., Malavasi-Yamashiro J., Hoshino M., Mizuno N.. ( 1986;). A stable lead by modification of Sato’s method. . J Electron Microsc (Tokyo) 35:, 304–306.[PubMed]
    [Google Scholar]
  18. Hosoya R., Yokoyama Y., Hamana K., Itoh T.. ( 2006;). Polyamine analysis within the eubacterial thirteen phyla Acidobacteria, Actinobacteria, Chlorobi, Chloroflexi, Chyrsiogenetes, Deferribacteres, Fibrobacteres, Firmicutes, Fusobacteria, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia. . Microbiol Cult Collect 22:, 21–33.
    [Google Scholar]
  19. Hutson R. A., Thompson D. E., Collins M. D.. ( 1993;). Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia as revealed by small-subunit rRNA gene sequences. . FEMS Microbiol Lett 108:, 103–110. [CrossRef][PubMed]
    [Google Scholar]
  20. Izumi H., Nunoura T., Miyazaki M., Mino S., Toki T., Takai K., Sako Y., Sawabe T., Nakagawa S.. ( 2012;). Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough. . Extremophiles 16:, 245–253. [CrossRef][PubMed]
    [Google Scholar]
  21. Janssen P. H.. ( 2006;). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. . Appl Environ Microbiol 72:, 1719–1728. [CrossRef][PubMed]
    [Google Scholar]
  22. Kishimoto N., Kosako Y., Tano T.. ( 1991;). Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. . Curr Microbiol 22:, 1–7. [CrossRef]
    [Google Scholar]
  23. Koch I. H., Gich F., Dunfield P. F., Overmann J.. ( 2008;). Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. . Int J Syst Evol Microbiol 58:, 1114–1122. [CrossRef][PubMed]
    [Google Scholar]
  24. Kulichevskaya I. S., Suzina N. E., Liesack W., Dedysh S. N.. ( 2010;). Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. . Int J Syst Evol Microbiol 60:, 301–306. [CrossRef][PubMed]
    [Google Scholar]
  25. Kulichevskaya I. S., Kostina L. A., Valásková V., Rijpstra W. I. C., Sinninghe Damsté J. S., de Boer W., Dedysh S. N.. ( 2012;). Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. . Int J Syst Evol Microbiol 62:, 1512–1520. [CrossRef][PubMed]
    [Google Scholar]
  26. Lau M. C., Aitchison J. C., Pointing S. B.. ( 2009;). Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. . Extremophiles 13:, 139–149. [CrossRef][PubMed]
    [Google Scholar]
  27. Lawson P. A., Gharbia S. E., Shah H. N., Clark D. R.. ( 1989;). Recognition of Fusobacterium nucleatum subgroups Fn-1, Fn-2 and Fn-3 by ribosomal RNA gene restriction patterns. . FEMS Microbiol Lett 53:, 41–45. [CrossRef][PubMed]
    [Google Scholar]
  28. Liesack W., Bak F., Kreft J. U., Stackebrandt E.. ( 1994;). Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. . Arch Microbiol 162:, 85–90. [CrossRef][PubMed]
    [Google Scholar]
  29. Lipman D. J., Pearson W. R.. ( 1985;). Rapid and sensitive protein similarity searches. . Science 227:, 1435–1441. [CrossRef][PubMed]
    [Google Scholar]
  30. Lovley D. R., Phillips E. J.. ( 1986;). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. . Appl Environ Microbiol 51:, 683–689.[PubMed]
    [Google Scholar]
  31. Lovley D. R., Phillips E. J.. ( 1988;). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. . Appl Environ Microbiol 54:, 1472–1480.[PubMed]
    [Google Scholar]
  32. Männistö M. K., Rawat S., Starovoytov V., Häggblom M. M.. ( 2011;). Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. . Int J Syst Evol Microbiol 61:, 1823–1828. [CrossRef][PubMed]
    [Google Scholar]
  33. Marks C. R., Stevenson B. S., Rudd S., Lawson P. A.. ( 2012;). Nitrospira-dominated biofilm within a thermal artesian spring: a case for nitrification-driven primary production in a geothermal setting. . Geobiology 10:, 457–466. [CrossRef][PubMed]
    [Google Scholar]
  34. McDonald D., Price M. N., Goodrich J., Nawrocki E. P., DeSantis T. Z., Probst A., Andersen G. L., Knight R., Hugenholtz P.. ( 2012;). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. . ISME J 6:, 610–618. [CrossRef][PubMed]
    [Google Scholar]
  35. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  36. Okamura K., Kawai A., Yamada T., Hiraishi A.. ( 2011;). Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria. . FEMS Microbiol Lett 317:, 138–142. [CrossRef][PubMed]
    [Google Scholar]
  37. Pankratov T. A., Dedysh S. N.. ( 2010;). Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. . Int J Syst Evol Microbiol 60:, 2951–2959. [CrossRef][PubMed]
    [Google Scholar]
  38. Pankratov T. A., Kirsanova L. A., Kaparullina E. N., Kevbrin V. V., Dedysh S. N.. ( 2012;). Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. . Int J Syst Evol Microbiol 62:, 430–437. [CrossRef][PubMed]
    [Google Scholar]
  39. Porter K. G., Feig Y. S.. ( 1980;). The use of DAPI for identifying and counting aquatic microflora. . Limnol Oceanogr 25:, 943–948. [CrossRef]
    [Google Scholar]
  40. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  41. Rios-Hernandez L. A., Gieg L. M., Suflita J. M.. ( 2003;). Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. . Appl Environ Microbiol 69:, 434–443. [CrossRef][PubMed]
    [Google Scholar]
  42. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  43. Sinninghe Damsté J. S., Rijpstra W. I. C., Hopmans E. C., Weijers J. W. H., Foesel B. U., Overmann J., Dedysh S. N.. ( 2011;). 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. . Appl Environ Microbiol 77:, 4147–4154. [CrossRef][PubMed]
    [Google Scholar]
  44. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  45. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  46. Tanner R. S.. ( 2002;). Cultivation of bacteria and fungi. . In Manual of Environmental Microbiology, , 3rd edn., pp. 69–78. Edited by Hurst C. J., Crawford R. L., Mills A. L., Garland J. L., Stetzenbach L. D., Lipson D. A... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  47. Tindall B. J.. ( 1990a;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  48. Tindall B. J.. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  49. Větrovský T., Baldrian P.. ( 2013;). The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. . PLoS ONE 8:, e57923. [CrossRef][PubMed]
    [Google Scholar]
  50. Widdel F., Hansen T. A.. ( 1992;). The dissimilatory sulfate- and sulfur-reducing bacteria. . In The Prokaryotes, , 2nd edn., pp. 583–624. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H... New York:: Springer;.
    [Google Scholar]
  51. Zimmermann J., Gonzalez J. M., Saiz-Jimenez C., Ludwig W.. ( 2005;). Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira cave using 23S rRNA sequence analyses. . Geomicrobiol J 22:, 379–388. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051425-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051425-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error