1887

Abstract

A novel bacterial strain, designated M8, was isolated from milk of a female macaque bred in captivity. The strain was Gram-stain-positive, anaerobic, irregular coccoid–rod-shaped without catalase activity. Analysis of 16S rRNA gene sequence similarity revealed that the isolate was most closely related to CCUG 31649 (96.4 %) and OMB105 (96.6 %). Sequences of , , and genes also confirmed that the strain was most closely related to the type strains of and . The isolate produced fructose-6-phosphate phosphoketolase which is in agreement with classification within the family . The major fatty acids were Cω9 (35.8 %), C (6.2 %) and C (5.7 %). Polar lipid analysis revealed five different glycolipids, two unidentified phospholipids and diphosphatidylglycerol. The peptidoglycan was of the type A4α -Lys–-Asp with the presence of ()-alanine, -glutamine, -asparagine and -lysine. The DNA G+C content of strain M8 was 50.1 mol%. On the basis of genetic, phylogenetic and phenotypic data, strain M8 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is M8 ( = DSM 24762 = CCM 7944). In addition, our results also revealed that DSM 21503 and DSM 17774 do not belong to different genera within the family . We therefore propose to reclassify as comb. nov. An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051326-0
2013-12-01
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4439.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051326-0&mimeType=html&fmt=ahah

References

  1. Apás A. L. , Dupraz J. , Ross R. , González S. N. , Arena M. E. . ( 2010; ). Probiotic administration effect on fecal mutagenicity and microflora in the goat’s gut. . J Biosci Bioeng 110:, 537–540. [CrossRef] [PubMed]
    [Google Scholar]
  2. Berthoud H. , Chavagnat F. , Haueter M. , Casey M. G. . ( 2005; ). Comparison of partial gene sequences encoding a phosphoketolase for the identification of bifidobacteria. . LWT-Food Sci Technol 38:, 101–105. [CrossRef]
    [Google Scholar]
  3. Castresana J. . ( 2000; ). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17:, 540–552. [CrossRef] [PubMed]
    [Google Scholar]
  4. Charteris W. P. , Kelly P. M. , Morelli L. , Collins J. K. . ( 1998; ). Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. . Lett Appl Microbiol 26:, 333–337. [CrossRef] [PubMed]
    [Google Scholar]
  5. Crociani F. , Biavati B. , Alessandrini A. , Chiarini C. , Scardovi V. . ( 1996; ). Bifidobacterium inopinatum sp. nov. and Bifidobacterium denticolens sp. nov., two new species isolated from human dental caries. . Int J Syst Bacteriol 46:, 564–571. [CrossRef] [PubMed]
    [Google Scholar]
  6. Delétoile A. , Passet V. , Aires J. , Chambaud I. , Butel M.-J. , Smokvina T. , Brisse S. . ( 2010; ). Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. . Res Microbiol 161:, 82–90. [CrossRef] [PubMed]
    [Google Scholar]
  7. Downes J. , Mantzourani M. , Beighton D. , Hooper S. , Wilson M. J. , Nicholson A. , Wade W. G. . ( 2011; ). Scardovia wiggsiae sp. nov., isolated from the human oral cavity and clinical material, and emended descriptions of the genus Scardovia and Scardovia inopinata . . Int J Syst Evol Microbiol 61:, 25–29. [CrossRef] [PubMed]
    [Google Scholar]
  8. García-Aljaro C. , Ballesté E. , Rosselló-Móra R. , Cifuentes A. , Richter M. , Blanch A. R. . ( 2012; ). Neoscardovia arbecensis gen. nov., sp. nov., isolated from porcine slurries. . Syst Appl Microbiol 35:, 374–379. [CrossRef] [PubMed]
    [Google Scholar]
  9. Huys G. , Vancanneyt M. , D’Haene K. , Falsen E. , Wauters G. , Vandamme P. . ( 2007; ). Alloscardovia omnicolens gen. nov., sp. nov., from human clinical samples. . Int J Syst Evol Microbiol 57:, 1442–1446. [CrossRef] [PubMed]
    [Google Scholar]
  10. Jeon Y. S. , Chung H. , Park S. , Hur I. , Lee J. H. , Chun J. . ( 2005; ). jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. . Bioinformatics 21:, 3171–3173. [CrossRef] [PubMed]
    [Google Scholar]
  11. Jian W. , Dong X. . ( 2002; ). Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., respectively. . Int J Syst Evol Microbiol 52:, 809–812. [CrossRef] [PubMed]
    [Google Scholar]
  12. Killer J. , Kopecný J. , Mrázek J. , Rada V. , Benada O. , Koppová I. , Havlík J. , Straka J. . ( 2009; ). Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. . Int J Syst Evol Microbiol 59:, 2020–2024. [CrossRef] [PubMed]
    [Google Scholar]
  13. Killer J. , Kopečný J. , Mrázek J. , Havlík J. , Koppová I. , Benada O. , Rada V. , Kofroňová O. . ( 2010a; ). Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. . Syst Appl Microbiol 33:, 359–366. [CrossRef] [PubMed]
    [Google Scholar]
  14. Killer J. , Kopecný J. , Mrázek J. , Rada V. , Dubná S. , Marounek M. . ( 2010b; ). Bifidobacteria in the digestive tract of bumblebees. . Anaerobe 16:, 165–170. [CrossRef] [PubMed]
    [Google Scholar]
  15. Killer J. , Kopečný J. , Mrázek J. , Koppová I. , Havlík J. , Benada O. , Kott T. . ( 2011; ). Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. . Int J Syst Evol Microbiol 61:, 1315–1321. [CrossRef] [PubMed]
    [Google Scholar]
  16. Killer J. , Mrázek J. , Bunešová V. , Havlík J. , Koppová I. , Benada O. , Rada V. , Kopečný J. , Vlková E. . ( 2013; ). Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa). . Syst Appl Microbiol 36:, 11–16. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lim K. S. , Huh C. S. , Baek Y. J. . ( 1993; ). Antimicrobial susceptibility of bifidobacteria. . J Dairy Sci 76:, 2168–2174. [CrossRef] [PubMed]
    [Google Scholar]
  18. Mahlen S. D. , Clarridge J. E. III . ( 2009; ). Site and clinical significance of Alloscardovia omnicolens and Bifidobacterium species isolated in the clinical laboratory. . J Clin Microbiol 47:, 3289–3293. [CrossRef] [PubMed]
    [Google Scholar]
  19. Mantzourani M. , Fenlon M. , Beighton D. . ( 2009; ). Association between Bifidobacteriaceae and the clinical severity of root caries lesions. . Oral Microbiol Immunol 24:, 32–37. [CrossRef] [PubMed]
    [Google Scholar]
  20. Martens M. , Dawyndt P. , Coopman R. , Gillis M. , De Vos P. , Willems A. . ( 2008; ). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). . Int J Syst Evol Microbiol 58:, 200–214. [CrossRef] [PubMed]
    [Google Scholar]
  21. Masco L. , Van Hoorde K. , De Brandt E. , Swings J. , Huys G. . ( 2006; ). Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. . J Antimicrob Chemother 58:, 85–94. [CrossRef] [PubMed]
    [Google Scholar]
  22. Morita H. , Nakano A. , Onoda H. , Toh H. , Oshima K. , Takami H. , Murakami M. , Fukuda S. , Takizawa T. . & other authors ( 2011; ). Bifidobacterium kashiwanohense sp. nov., isolated from healthy infant faeces. . Int J Syst Evol Microbiol 61:, 2610–2615. [CrossRef] [PubMed]
    [Google Scholar]
  23. Moubareck C. , Gavini F. , Vaugien L. , Butel M. J. , Doucet-Populaire F. . ( 2005; ). Antimicrobial susceptibility of bifidobacteria. . J Antimicrob Chemother 55:, 38–44. [CrossRef] [PubMed]
    [Google Scholar]
  24. Okamoto M. , Benno Y. , Leung K. P. , Maeda N. . ( 2007; ). Metascardovia criceti Gen. Nov., Sp. Nov., from hamster dental plaque. . Microbiol Immunol 51:, 747–754.[PubMed] [CrossRef]
    [Google Scholar]
  25. Orban J. I. , Patterson J. A. . ( 2000; ). Modification of the phosphoketolase assay for rapid identification of bifidobacteria. . J Microbiol Methods 40:, 221–224. [CrossRef] [PubMed]
    [Google Scholar]
  26. Rada V. , Petr J. . ( 2000; ). A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. . J Microbiol Methods 43:, 127–132. [CrossRef] [PubMed]
    [Google Scholar]
  27. Scardovi V. . ( 1986; ). Genus Bifidobacterium . . In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1418–1434. Edited by Sneath P. H. A. , Mair N. S. , Sharp M. E. , Holt J. G. . . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  28. Simpson P. J. , Ross R. P. , Fitzgerald G. F. , Stanton C. . ( 2004; ). Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. . Int J Syst Evol Microbiol 54:, 401–406. [CrossRef] [PubMed]
    [Google Scholar]
  29. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  30. Stackebrandt E. , Rainey F. A. , Ward-Rainey N. L. . ( 1997; ). Proposal for a new hierarchic classification system, Actinobacteria classis nov. . Int J Syst Bacteriol 47:, 479–491. [CrossRef]
    [Google Scholar]
  31. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  32. Trebichavsky I. , Rada V. , Splichalova A. , Splichal I. . ( 2009; ). Cross-talk of human gut with bifidobacteria. . Nutr Rev 67:, 77–82. [CrossRef] [PubMed]
    [Google Scholar]
  33. Vlková E. , Rada V. , Popelářová P. , Trojanová I. , Killer J. . ( 2006; ). Antimicrobial susceptibility of bifidobacteria isolated from gastrointestinal tract of calves. . Livest Sci 105:, 253–259. [CrossRef]
    [Google Scholar]
  34. Yoon H. J. , Chun J. , Kim J. H. , Kang S. S. , Na D. J. . ( 2010; ). Gardnerella vaginalis septicaemia with pyelonephritis, infective endocarditis and septic emboli in the kidney and brain of an adult male. . Int J STD AIDS 21:, 653–657. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051326-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051326-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error