1887

Abstract

Two strains, designated K2814 and K282, were isolated from a compost pile in Japan. These strains were Gram-stain-variable, aerobic, motile and endospore-forming rods. The strains produced a characteristic brown non-diffusible pigment. The 16S rRNA gene sequences of the strains were 100 % identical and had high similarity to that of LMG 22481 (97.3 %). Phylogenetic analyses based on 16S rRNA gene sequences revealed that these strains belong to the genus Strains K2814 and K282 contained -diaminopimelic acid in their cell walls. Strains K2814 and K282 contained MK-7 (96.0 and 97.2 %, respectively) and MK-8 (4.0 and 2.8 %, respectively) as the major and minor menaquinones, respectively. Their major cellular fatty acids were anteiso-C, anteiso-C, iso-C and iso-C. The DNA G+C contents of strains K2814 and K282 were 48.8 and 49.8 mol%, respectively. Polar lipids of strain K2814 were composed of phosphatidyl--methylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, three unidentified polar lipids, an unidentified aminophospholipid and an unidentified aminolipid. The level of DNA–DNA relatedness between strains K2814 and K282 was 99 or 100 %, and levels between strain K2814 and the type strains of seven related species of the genus , including LMG 22481, were below 59 %. From the chemotaxonomic and physiological data and the levels of DNA–DNA relatedness, these two strains should be classified as representing a novel species of the genus , for which the name sp. nov. (type strain K2814 = JCM 18162 = ATCC BAA-2417 = DSM 25523) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051052-0
2014-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/506.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051052-0&mimeType=html&fmt=ahah

References

  1. Allan R. N., Lebbe L., Heyrman J., De Vos P., Buchanan C. J., Logan N. A.. ( 2005;). Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. . Int J Syst Evol Microbiol 55:, 1039–1050. [CrossRef][PubMed]
    [Google Scholar]
  2. Baek S.-H., Im W.-T., Oh H. W., Lee J.-S., Oh H.-M., Lee S.-T.. ( 2006;). Brevibacillus ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 56:, 2665–2669. [CrossRef][PubMed]
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A.. (editors) ( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  4. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  5. Choi M.-J., Bae J.-Y., Kim K.-Y., Kang H., Cha C.-J.. ( 2010;). Brevibacillus fluminis sp. nov., isolated from sediment of estuarine wetland. . Int J Syst Evol Microbiol 60:, 1595–1599. [CrossRef][PubMed]
    [Google Scholar]
  6. Claus D., Berkeley R. C. W.. ( 1986;). Genus Bacillus Cohn 1872, 174AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1105–1139. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Goto K., Fujita R., Kato Y., Asahara M., Yokota A.. ( 2004;). Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 ( = NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov.. Int J Syst Evol Microbiol 54:, 419–427. [CrossRef][PubMed]
    [Google Scholar]
  10. Hatayama K., Kawai S., Shoun H., Ueda Y., Nakamura A.. ( 2005a;). Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. . Int J Syst Evol Microbiol 55:, 1539–1544. [CrossRef][PubMed]
    [Google Scholar]
  11. Hatayama K., Shoun H., Ueda Y., Nakamura A.. ( 2005b;). Planifilum fimeticola gen. nov., sp. nov. and Planifilum fulgidum sp. nov., novel members of the family ‘Thermoactinomycetaceae’ isolated from compost. . Int J Syst Evol Microbiol 55:, 2101–2104. [CrossRef][PubMed]
    [Google Scholar]
  12. Hatayama K., Shoun H., Ueda Y., Nakamura A.. ( 2006;). Tuberibacillus calidus gen. nov., sp. nov., isolated from a compost pile and reclassification of Bacillus naganoensis Tomimura et al. 1990 as Pullulanibacillus naganoensis gen. nov., comb. nov. and Bacillus laevolacticus Andersch et al. 1994 as Sporolactobacillus laevolacticus comb. nov.. Int J Syst Evol Microbiol 56:, 2545–2551. [CrossRef][PubMed]
    [Google Scholar]
  13. Iida K., Ueda Y., Kawamura Y., Ezaki T., Takade A., Yoshida S., Amako K.. ( 2005;). Paenibacillus motobuensis sp. nov., isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan. . Int J Syst Evol Microbiol 55:, 1811–1816. [CrossRef][PubMed]
    [Google Scholar]
  14. Inan K., Canakci S., Belduz A. O., Sahin F.. ( 2012;). Brevibacillus aydinogluensis sp. nov., a moderately thermophilic bacterium isolated from Karakoc hot spring. . Int J Syst Evol Microbiol 62:, 849–855. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim M. K., Sathiyaraj S., Pulla R. K., Yang D.-C.. ( 2009;). Brevibacillus panacihumi sp. nov., a β-glucosidase-producing bacterium. . Int J Syst Evol Microbiol 59:, 1227–1231. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  18. Lacey J., Cross T.. ( 1989;). Genus Thermoactinomyces Tsiklinsky 1899, 501AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 4, pp. 2574–2585. Edited by Williams S. T., Sharpe M. E., Holt J. G... Baltimore:: Williams and Wilkins;.
    [Google Scholar]
  19. Logan N. A., De Vos P.. ( 2009;). Genus IV. Brevibacillus Shida, Takagi, Kadowaki and Komagata 1996a, 942VP. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 304–316. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  20. Logan N. A., Forsyth G., Lebbe L., Goris J., Heyndrickx M., Balcaen A., Verhelst A., Falsen E., Ljungh Å.. & other authors ( 2002;). Polyphasic identification of Bacillus and Brevibacillus strains from clinical, dairy and industrial specimens and proposal of Brevibacillus invocatus sp. nov.. Int J Syst Evol Microbiol 52:, 953–966. [CrossRef][PubMed]
    [Google Scholar]
  21. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  22. Manachini P. L., Fortina M. G., Parini C., Craveri R.. ( 1985;). Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. . Int J Syst Bacteriol 35:, 493–496. [CrossRef]
    [Google Scholar]
  23. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  24. Nei M., Kumar S.. ( 2000;). Molecular Evolution and Phylogenetics. New York:: Oxford University Press;.
    [Google Scholar]
  25. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  26. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Shida O., Takagi H., Kadowaki K., Udaka S., Nakamura L. K., Komagata K.. ( 1995;). Proposal of Bacillus reuszeri sp. nov., Bacillus formosus sp. nov., nom. rev., and Bacillus borstelensis sp. nov., nom. rev.. Int J Syst Bacteriol 45:, 93–100. [CrossRef]
    [Google Scholar]
  29. Shida O., Takagi H., Kadowaki K., Komagata K.. ( 1996;). Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov.. Int J Syst Bacteriol 46:, 939–946. [CrossRef][PubMed]
    [Google Scholar]
  30. Stanier R. Y., Palleroni N. J., Doudoroff M.. ( 1966;). The aerobic pseudomonads: a taxonomic study. . J Gen Microbiol 43:, 159–271. [CrossRef][PubMed]
    [Google Scholar]
  31. Takebe F., Hirota K., Nodasaka Y., Yumoto I.. ( 2012;). Brevibacillus nitrificans sp. nov., a nitrifying bacterium isolated from a microbiological agent for enhancing microbial digestion in sewage treatment tanks. . Int J Syst Evol Microbiol 62:, 2121–2126. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  34. Toda T.. ( 1928;). Flagellar staining. . Nihon Ijishinpo 283:, 113 (in Japanese).
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051052-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051052-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error