1887

Abstract

A Gram-staining-positive, endospore-forming rod was isolated independently from clinical specimens in New York State, USA, once in 2009 and twice in 2011. The three isolates had identical 16S rRNA gene sequences and, based on their 16S rRNA gene sequence, are most closely related to the type strains of and (94.6 % similarity). The partial 23S rRNA gene sequences of the three strains were also 100 % identical. Maximum-likelihood phylogenetic analysis suggests that the new isolates belong to the family . Additional biochemical and phenotypic characteristics of the strains support the family designation and suggest that the three isolates represent a single species. In each of the strains, the predominant menaquinone is MK-7, the diagnostic diamino acid is -diaminopimelic acid and the major cellular fatty acids are iso-C, anteiso-C and iso-C. The polar lipids are phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids, four unknown aminophospholipids and an unknown lipid. It is proposed that the novel isolates represent a single novel species within a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is strain 23436 ( = DSM 45707 = LMG 27204).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050914-0
2013-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4087.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050914-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Anisimova M., Gascuel O.. ( 2006;). Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. . Syst Biol 55:, 539–552. [CrossRef][PubMed]
    [Google Scholar]
  3. Chen J.-J., Lin L.-B., Zhang L.-L., Zhang J., Tang S.-K., Wei Y.-L., Li W.-J.. ( 2012;). Laceyella sediminis sp. nov., a thermophilic bacterium isolated from a hot spring. . Int J Syst Evol Microbiol 62:, 38–42. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  5. Embley T. M., Wait R.. ( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 141–147. Edited by Goodfellow M., O’Donnell A. G... New York:: Wiley;.
    [Google Scholar]
  6. Forbes B. A., Sahm D. F., Weissfeld A. S.. ( 1998;). Overview of bacterial identification methods and strategies. . In Bailey and Scott’s Diagnostic Microbiology, pp. 424–446. Edited by Tille P. M... St Louis, MO:: Mosby;.
    [Google Scholar]
  7. Gordon R. E.. ( 1973;). The genus Bacillus. Washington, DC:: Agricultural Research Service, US Dept of Agriculture;.
    [Google Scholar]
  8. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. ( 1997;). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47:, 1129–1133. [CrossRef][PubMed]
    [Google Scholar]
  9. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  10. Hunt D. E., Klepac-Ceraj V., Acinas S. G., Gautier C., Bertilsson S., Polz M. F.. ( 2006;). Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. . Appl Environ Microbiol 72:, 2221–2225. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Logan N. A., Lebbe L., Hoste B., Goris J., Forsyth G., Heyndrickx M., Murray B. L., Syme N., Wynn-Williams D. D., De Vos P.. ( 2000;). Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. . Int J Syst Evol Microbiol 50:, 1741–1753.[PubMed]
    [Google Scholar]
  13. Ludwig W., Dorn S., Springer N., Kirchhof G., Schleifer K. H.. ( 1994;). PCR-based preparation of 23S rRNA-targeted group-specific polynucleotide probes. . Appl Environ Microbiol 60:, 3236–3244.[PubMed]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  16. Myers E. W., Miller W.. ( 1988;). Optimal alignments in linear space. . Comput Appl Biosci 4:, 11–17.[PubMed]
    [Google Scholar]
  17. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  18. Talavera G., Castresana J.. ( 2007;). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. . Syst Biol 56:, 564–577. [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  20. Tsilinsky P.. ( 1899;). Sur les mucedinéés thermophiles. . Ann Inst Pasteur (Paris) 13:, 500–505 (in French).
    [Google Scholar]
  21. Wolfgang W. J., Carpenter A. N., Cole J. A., Gronow S., Habura A., Jose S., Nazarian E. J., Kohlerschmidt D. J., Limberger R.. & other authors ( 2011;). Neisseria wadsworthii sp. nov. and Neisseria shayeganii sp. nov., isolated from clinical specimens. . Int J Syst Evol Microbiol 61:, 91–98. [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon J.-H., Kim I.-G., Shin Y.-K., Park Y.-H.. ( 2005;). Proposal of the genus Thermoactinomyces sensu stricto and three new genera, Laceyella, Thermoflavimicrobium and Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 55:, 395–400. [CrossRef][PubMed]
    [Google Scholar]
  23. Zhang J., Tang S.-K., Zhang Y.-Q., Yu L.-Y., Klenk H.-P., Li W.-J.. ( 2010;). Laceyella tengchongensis sp. nov., a thermophile isolated from soil of a volcano. . Int J Syst Evol Microbiol 60:, 2226–2230. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050914-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050914-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error