1887

Abstract

Two strictly aerobic, extremely halophilic archaea, strains WSY15-H1 and WSY15-H3, were isolated from a salt mine in Wensu county, Xinjiang province, China. Cells of the two strains were Gram-stain-negative, non-motile and pleomorphic. Colonies were pink- and red-pigmented, respectively. Strain WSY15-H1 grew at 20–45 °C (optimum 37–42 °C), 1.6–5.4 M NaCl (optimum 3.4–3.9 M), 0–2.0 M MgCl (optimum 0.1–0.5 M) and pH 6.0–9.0 (optimum 7.0), whereas strain WSY15-H3 grew at 20–50 °C (optimum 37 °C), 1.9–5.4 M NaCl (optimum 3.4 M), 0.02–2.5 M MgCl (optimum 0.5-1.0 M) and pH 6.0–7.5 (optimum 6.5). The minimal NaCl concentrations to prevent cell lysis were 9 % (w/v) for strain WSY15-H1 and 8 % (w/v) for strain WSY15-H3. The major polar lipids of the two isolates were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate, as well as nine glycolipids for strain WSY15-H1 and seven glycolipids for strain WSY15-H3; two of these glycolipids (GL1 and GL3) were chromatographically identical to bis-sulfated diglycosyl diether (S-DGD-1) and sulfated diglycosyl diether (S-DGD-1), respectively. The genomic DNA G+C contents of strains WSY15-H1 and WSY15-H3 were 65.4 and 66.2 mol%. On the basis of 16S rRNA gene sequence analysis, strains WSY15-H1 and WSY15-H3 shared 97.0 % similarity with each other and showed respectively 98.4 and 97.6 % sequence similarity to TBN21, which was the only type strain that had higher than 91 % sequence similarity with the two isolates. Analysis of phylogenetic relationships and DNA–DNA relatedness indicated that strains WSY15-H1 and WSY15-H3 represent two novel lineages with closest affinity to TBN21. Based on phenotypic, chemotaxonomic and genotypic characteristics, two novel species of the genus are proposed, sp. nov. (type strain WSY15-H1 = JCM 18548 = GCMCC 1.12371) and sp. nov. (type strain WSY15-H3 = JCM 18549 = GCMCC 1.12285).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050864-0
2013-12-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4380.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050864-0&mimeType=html&fmt=ahah

References

  1. Cui H.-L., Gao X., Yang X., Xu X.-W.. ( 2011;). Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. . Int J Syst Evol Microbiol 61:, 1617–1621. [CrossRef][PubMed]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  3. Dong X. Z., Cai M. Y.. ( 2001;). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press (English translation);.
    [Google Scholar]
  4. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  5. Enache M., Itoh T., Fukushima T., Usami R., Dumitru L., Kamekura M.. ( 2007;). Phylogenetic relationships within the family Halobacteriaceae inferred from rpoB’ gene and protein sequences. . Int J Syst Evol Microbiol 57:, 2289–2295. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Grishchenkov V. G., Townsend R. T., McDonald T. J., Autenrieth R. L., Bonner J. S., Boronin A. M.. ( 2000;). Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. . Process Biochem 35:, 889–896. [CrossRef]
    [Google Scholar]
  10. Gutiérrez C., González C.. ( 1972;). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  11. Huo Y. Y., Xu X. W., Cui H. L., Wu M.. ( 2010;). Gracilibacillus ureilyticus sp. nov., a halotolerant bacterium from a saline-alkaline soil. . Int J Syst Evol Microbiol 60:, 1383–1386. [CrossRef][PubMed]
    [Google Scholar]
  12. Huss V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  13. Kates M.. ( 1986;). Techniques of Lipidology, Isolation, Anylysis and Indentification of Lipids, , 2nd rev. edn., pp. 106–107, 241–246. Amsterdam:: Elsevier;.
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  16. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  17. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T.. ( 2010;). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B’ (rpoB’) gene. . Int J Syst Evol Microbiol 60:, 2398–2408. [CrossRef][PubMed]
    [Google Scholar]
  18. Ng W.-L., Yang C.-F., Halladay J. T., Arora A., DasSarma S.. ( 1995;). Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium. . In Archaea: a Laboratory Manual, vol. 1, pp. 179–180. Edited by DasSarma S., Fleischmann E. M... Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  19. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposal of minimal standards for the description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  24. Zhu X.-F.. ( 2011;). Modern Experimental Technique of Microbiology. Zhejiang:: Zhejiang University Press (English translation);.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050864-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050864-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error