1887

Abstract

A hydrogenogenic, carboxydotrophic marine bacterium, strain KKC1, was isolated from a sediment core sample taken from a submerged marine caldera. Cells were non-motile, Gram-stain-negative, 1.0–3.0 µm straight rods, often observed with round endospores. Strain KKC1 grew at 55–68 °C, pH 5.2–9.2 and 0.8–14 % (w/v) salinity. Optimum growth occurred at 65 °C, pH 7.0–7.5 and 2.46 % salinity with a doubling time of 3.7 h. The isolate grew chemolithotrophically, producing H from carbon monoxide (CO) oxidation with reduction of various electron acceptors, e.g. sulfite, thiosulfate, fumarate, ferric iron and AQDS (9,10-anthraquinone 2,6-disulfonate). KKC1 grew heterotrophically on pyruvate, lactate, fumarate, glucose, fructose and mannose with thiosulfate as an electron acceptor. When grown mixotrophically on CO and pyruvate, C constituted almost half of the total cellular fatty acids. The DNA G+C content was 50.6 mol%. The 16S rRNA gene sequence of KKC1 was most closely related to those of members of the genus with similarity ranging from 91 to 89 %. Based on physiological and phylogenetic novelty, we propose the isolate as a representative of a new genus and novel species with the name gen. nov., sp. nov.; the type strain of the type species is KKC1 ( = DSM 26464 = NBRC 109353).

Funding
This study was supported by the:
  • Geo Biotechnology Development Organization
  • Ministry of Education, Culture, Sports, Science and Technology (MEXT) (Award 20248023)
  • Japan Society for the Promotion of Science (JSPS) (Award 244441)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050468-0
2013-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3602.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050468-0&mimeType=html&fmt=ahah

References

  1. Balk M., van Gelder T., Weelink S. A., Stams A. J. M. ( 2008 ). (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. . Appl Environ Microbiol 74, 403409. [View Article] [PubMed]
    [Google Scholar]
  2. Bartholomew J. W., Mittwer T. ( 1952 ). The Gram stain. . Bacteriol Rev 16, 129.[PubMed]
    [Google Scholar]
  3. Boogerd F. C., de Vrind J. P. M. ( 1987 ). Manganese oxidation by Leptothrix discophora . . J Bacteriol 169, 489494.[PubMed]
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. ( 1994 ). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44, 812826. [View Article] [PubMed]
    [Google Scholar]
  5. Cord-Ruwisch R. ( 1985 ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. . J Microbiol Methods 4, 3336. [View Article]
    [Google Scholar]
  6. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.-F., Guindon S., Lefort V. et al. ( 2008 ). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36 (Web Server issue), W465W469. [View Article] [PubMed]
    [Google Scholar]
  7. Diekert G. B., Thauer R. K. ( 1978 ). Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum . . J Bacteriol 136, 597606.[PubMed]
    [Google Scholar]
  8. Drake H. L., Daniel S. L. ( 2004 ). Physiology of the thermophilic acetogen Moorella thermoacetica . . Res Microbiol 155, 422436. [View Article] [PubMed]
    [Google Scholar]
  9. Fardeau M.-L., Bonilla Salinas M., L'Haridon S., Jeanthon C., Verhé F., Cayol J.-L., Patel B. K. C., Garcia J.-L., Ollivier B. ( 2004 ). Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. . Int J Syst Evol Microbiol 54, 467474. [View Article] [PubMed]
    [Google Scholar]
  10. Fontaine F. E., Peterson W. H., McCoy E., Johnson M. J., Ritter G. J. ( 1942 ). A new type of glucose fermentation by Clostridium thermoaceticum . . J Bacteriol 43, 701715.[PubMed]
    [Google Scholar]
  11. Fröstl J. M., Seifritz C., Drake H. L. ( 1996 ). Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum . . J Bacteriol 178, 45974603.[PubMed]
    [Google Scholar]
  12. Hamouda T., Shih A. Y., Baker J. R. Jr ( 2002 ). A rapid staining technique for the detection of the initiation of germination of bacterial spores. . Lett Appl Microbiol 34, 8690. [View Article] [PubMed]
    [Google Scholar]
  13. Jiang B., Henstra A.-M., Paulo P. L., Balk M., van Doesburg W., Stams A. J. M. ( 2009 ). Atypical one-carbon metabolism of an acetogenic and hydrogenogenic Moorella thermoacetica strain. . Arch Microbiol 191, 123131. [View Article] [PubMed]
    [Google Scholar]
  14. Kiyokawa S., Ninomiya T., Nagata T., Oguri K., Ito T., Ikehara M., Yamaguchi K. E. ( 2012 ). Effect of tides and weather on sedimentation of iron-oxyhydroxides in a shallow-marine hydrothermal environment at Nagahama Bay, Satsuma Iwo-Jima Island, Kagoshima, southwest Japan. . Island Arc 21, 6678. [View Article]
    [Google Scholar]
  15. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  16. Lee H. S., Kang S. G., Bae S. S., Lim J. K., Cho Y., Kim Y. J., Jeon J. H., Cha S.-S., Kwon K. K. et al. ( 2008 ). The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. . J Bacteriol 190, 74917499. [View Article] [PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurements of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  18. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  19. Nepomnyashchaya Y. N., Slobodkina G. B., Baslerov R. V., Chernyh N. A., Bonch-Osmolovskaya E. A., Netrusov A. I., Slobodkin A. I. ( 2012 ). Moorella humiferrea sp. nov., a thermophilic, anaerobic bacterium capable of growth via electron shuttling between humic acid and Fe(III). . Int J Syst Evol Microbiol 62, 613617. [View Article] [PubMed]
    [Google Scholar]
  20. Oger P., Sokolova T. G., Kozhevnikova D. A., Chernyh N. A., Bartlett D. H., Bonch-Osmolovskaya E. A., Lebedinsky A. V. ( 2011 ). Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain AM4, capable of organotrophic growth and growth at the expense of hydrogenogenic or sulfidogenic oxidation of carbon monoxide. . J Bacteriol 193, 70197020. [View Article] [PubMed]
    [Google Scholar]
  21. Parshina S. N., Sipma J., Nakashimada Y., Henstra A. M., Smidt H., Lysenko A. M., Lens P. N. L., Lettinga G., Stams A. J. M. ( 2005 ). Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. . Int J Syst Evol Microbiol 55, 21592165. [View Article] [PubMed]
    [Google Scholar]
  22. Pfennig N., Lippert K. D. ( 1966 ). Über das vitamin B12-bedürfnis phototropher schwefelbakterien. . Arch Microbiol 55, 245256.
    [Google Scholar]
  23. Ragsdale S. W. ( 2004 ). Life with carbon monoxide. . Crit Rev Biochem Mol Biol 39, 165195. [View Article] [PubMed]
    [Google Scholar]
  24. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc.;
    [Google Scholar]
  25. Savage M. D., Wu Z. G., Daniel S. L., Lundie L. L. Jr, Drake H. L. ( 1987 ). Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum . . Appl Environ Microbiol 53, 19021906.[PubMed]
    [Google Scholar]
  26. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. ( 2000 ). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. . Int J Syst Evol Microbiol 50, 771779. [View Article] [PubMed]
    [Google Scholar]
  27. Slobodkin A., Reysenbach A.-L., Strutz N., Dreier M., Wiegel J. ( 1997a ). Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. . Int J Syst Bacteriol 47, 541547. [View Article] [PubMed]
    [Google Scholar]
  28. Slobodkin A., Reysenbach A.-L., Mayer F., Wiegel J. ( 1997b ). Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov.. Int J Syst Bacteriol 47, 969974. [View Article] [PubMed]
    [Google Scholar]
  29. Sokolova T. G., González J. M., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kato C., Bonch-Osmolovskaya E. A., Robb F. T. ( 2001 ). Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. . Int J Syst Evol Microbiol 51, 141149.[PubMed]
    [Google Scholar]
  30. Sokolova T. G., Jeanthon C., Kostrikina N. A., Chernyh N. A., Lebedinsky A. V., Stackebrandt E., Bonch-Osmolovskaya E. A. ( 2004 ). The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Extremophiles 8, 317323. [View Article] [PubMed]
    [Google Scholar]
  31. Sokolova T. G., Henstra A.-M., Sipma J., Parshina S. N., Stams A. J. M., Lebedinsky A. V. ( 2009 ). Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. . FEMS Microbiol Ecol 68, 131141. [View Article] [PubMed]
    [Google Scholar]
  32. Svetlitchnyi V., Peschel C., Acker G., Meyer O. ( 2001 ). Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans . . J Bacteriol 183, 51345144. [View Article] [PubMed]
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  34. Techtmann S. M., Colman A. S., Robb F. T. ( 2009 ). ‘That which does not kill us only makes us stronger’: the role of carbon monoxide in thermophilic microbial consortia. . Environ Microbiol 11, 10271037. [View Article] [PubMed]
    [Google Scholar]
  35. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. ( 2010 ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60, 249266. [View Article] [PubMed]
    [Google Scholar]
  36. Vannier P., Marteinsson V. T., Fridjonsson O. H., Oger P., Jebbar M. ( 2011 ). Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. . J Bacteriol 193, 14811482. [View Article] [PubMed]
    [Google Scholar]
  37. Wiegel J., Braun M., Gottschalk G. ( 1981 ). Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. . Curr Microbiol 5, 255260. [View Article]
    [Google Scholar]
  38. Wolin E. A., Wolin M. J., Wolfe R. S. ( 1963 ). Formation of methane by bacterial extracts. . J Biol Chem 238, 28822886.[PubMed]
    [Google Scholar]
  39. Yoneda Y., Yoshida T., Kawaichi S., Daifuku T., Takabe K., Sako Y. ( 2012 ). Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring. . Int J Syst Evol Microbiol 62, 16921697. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050468-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050468-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error