1887

Abstract

A hydrogenogenic, carboxydotrophic marine bacterium, strain KKC1, was isolated from a sediment core sample taken from a submerged marine caldera. Cells were non-motile, Gram-stain-negative, 1.0–3.0 µm straight rods, often observed with round endospores. Strain KKC1 grew at 55–68 °C, pH 5.2–9.2 and 0.8–14 % (w/v) salinity. Optimum growth occurred at 65 °C, pH 7.0–7.5 and 2.46 % salinity with a doubling time of 3.7 h. The isolate grew chemolithotrophically, producing H from carbon monoxide (CO) oxidation with reduction of various electron acceptors, e.g. sulfite, thiosulfate, fumarate, ferric iron and AQDS (9,10-anthraquinone 2,6-disulfonate). KKC1 grew heterotrophically on pyruvate, lactate, fumarate, glucose, fructose and mannose with thiosulfate as an electron acceptor. When grown mixotrophically on CO and pyruvate, C constituted almost half of the total cellular fatty acids. The DNA G+C content was 50.6 mol%. The 16S rRNA gene sequence of KKC1 was most closely related to those of members of the genus with similarity ranging from 91 to 89 %. Based on physiological and phylogenetic novelty, we propose the isolate as a representative of a new genus and novel species with the name gen. nov., sp. nov.; the type strain of the type species is KKC1 ( = DSM 26464 = NBRC 109353).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050468-0
2013-10-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3602.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050468-0&mimeType=html&fmt=ahah

References

  1. Balk M., van Gelder T., Weelink S. A., Stams A. J. M.. ( 2008;). (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. . Appl Environ Microbiol 74:, 403–409. [CrossRef][PubMed]
    [Google Scholar]
  2. Bartholomew J. W., Mittwer T.. ( 1952;). The Gram stain. . Bacteriol Rev 16:, 1–29.[PubMed]
    [Google Scholar]
  3. Boogerd F. C., de Vrind J. P. M.. ( 1987;). Manganese oxidation by Leptothrix discophora. . J Bacteriol 169:, 489–494.[PubMed]
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44:, 812–826. [CrossRef][PubMed]
    [Google Scholar]
  5. Cord-Ruwisch R.. ( 1985;). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. . J Microbiol Methods 4:, 33–36. [CrossRef]
    [Google Scholar]
  6. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.-F., Guindon S., Lefort V. et al. ( 2008;). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: (Web Server issue), W465–W469. [CrossRef][PubMed]
    [Google Scholar]
  7. Diekert G. B., Thauer R. K.. ( 1978;). Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. . J Bacteriol 136:, 597–606.[PubMed]
    [Google Scholar]
  8. Drake H. L., Daniel S. L.. ( 2004;). Physiology of the thermophilic acetogen Moorella thermoacetica. . Res Microbiol 155:, 422–436. [CrossRef][PubMed]
    [Google Scholar]
  9. Fardeau M.-L., Bonilla Salinas M., L'Haridon S., Jeanthon C., Verhé F., Cayol J.-L., Patel B. K. C., Garcia J.-L., Ollivier B.. ( 2004;). Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. . Int J Syst Evol Microbiol 54:, 467–474. [CrossRef][PubMed]
    [Google Scholar]
  10. Fontaine F. E., Peterson W. H., McCoy E., Johnson M. J., Ritter G. J.. ( 1942;). A new type of glucose fermentation by Clostridium thermoaceticum. . J Bacteriol 43:, 701–715.[PubMed]
    [Google Scholar]
  11. Fröstl J. M., Seifritz C., Drake H. L.. ( 1996;). Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum. . J Bacteriol 178:, 4597–4603.[PubMed]
    [Google Scholar]
  12. Hamouda T., Shih A. Y., Baker J. R. Jr. ( 2002;). A rapid staining technique for the detection of the initiation of germination of bacterial spores. . Lett Appl Microbiol 34:, 86–90. [CrossRef][PubMed]
    [Google Scholar]
  13. Jiang B., Henstra A.-M., Paulo P. L., Balk M., van Doesburg W., Stams A. J. M.. ( 2009;). Atypical one-carbon metabolism of an acetogenic and hydrogenogenic Moorella thermoacetica strain. . Arch Microbiol 191:, 123–131. [CrossRef][PubMed]
    [Google Scholar]
  14. Kiyokawa S., Ninomiya T., Nagata T., Oguri K., Ito T., Ikehara M., Yamaguchi K. E.. ( 2012;). Effect of tides and weather on sedimentation of iron-oxyhydroxides in a shallow-marine hydrothermal environment at Nagahama Bay, Satsuma Iwo-Jima Island, Kagoshima, southwest Japan. . Island Arc 21:, 66–78. [CrossRef]
    [Google Scholar]
  15. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  16. Lee H. S., Kang S. G., Bae S. S., Lim J. K., Cho Y., Kim Y. J., Jeon J. H., Cha S.-S., Kwon K. K. et al. ( 2008;). The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. . J Bacteriol 190:, 7491–7499. [CrossRef][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurements of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  18. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  19. Nepomnyashchaya Y. N., Slobodkina G. B., Baslerov R. V., Chernyh N. A., Bonch-Osmolovskaya E. A., Netrusov A. I., Slobodkin A. I.. ( 2012;). Moorella humiferrea sp. nov., a thermophilic, anaerobic bacterium capable of growth via electron shuttling between humic acid and Fe(III). . Int J Syst Evol Microbiol 62:, 613–617. [CrossRef][PubMed]
    [Google Scholar]
  20. Oger P., Sokolova T. G., Kozhevnikova D. A., Chernyh N. A., Bartlett D. H., Bonch-Osmolovskaya E. A., Lebedinsky A. V.. ( 2011;). Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain AM4, capable of organotrophic growth and growth at the expense of hydrogenogenic or sulfidogenic oxidation of carbon monoxide. . J Bacteriol 193:, 7019–7020. [CrossRef][PubMed]
    [Google Scholar]
  21. Parshina S. N., Sipma J., Nakashimada Y., Henstra A. M., Smidt H., Lysenko A. M., Lens P. N. L., Lettinga G., Stams A. J. M.. ( 2005;). Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. . Int J Syst Evol Microbiol 55:, 2159–2165. [CrossRef][PubMed]
    [Google Scholar]
  22. Pfennig N., Lippert K. D.. ( 1966;). Über das vitamin B12-bedürfnis phototropher schwefelbakterien. . Arch Microbiol 55:, 245–256.
    [Google Scholar]
  23. Ragsdale S. W.. ( 2004;). Life with carbon monoxide. . Crit Rev Biochem Mol Biol 39:, 165–195. [CrossRef][PubMed]
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc.;
    [Google Scholar]
  25. Savage M. D., Wu Z. G., Daniel S. L., Lundie L. L. Jr, Drake H. L.. ( 1987;). Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. . Appl Environ Microbiol 53:, 1902–1906.[PubMed]
    [Google Scholar]
  26. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H.. ( 2000;). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. . Int J Syst Evol Microbiol 50:, 771–779. [CrossRef][PubMed]
    [Google Scholar]
  27. Slobodkin A., Reysenbach A.-L., Strutz N., Dreier M., Wiegel J.. ( 1997a;). Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. . Int J Syst Bacteriol 47:, 541–547. [CrossRef][PubMed]
    [Google Scholar]
  28. Slobodkin A., Reysenbach A.-L., Mayer F., Wiegel J.. ( 1997b;). Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov.. Int J Syst Bacteriol 47:, 969–974. [CrossRef][PubMed]
    [Google Scholar]
  29. Sokolova T. G., González J. M., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kato C., Bonch-Osmolovskaya E. A., Robb F. T.. ( 2001;). Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. . Int J Syst Evol Microbiol 51:, 141–149.[PubMed]
    [Google Scholar]
  30. Sokolova T. G., Jeanthon C., Kostrikina N. A., Chernyh N. A., Lebedinsky A. V., Stackebrandt E., Bonch-Osmolovskaya E. A.. ( 2004;). The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Extremophiles 8:, 317–323. [CrossRef][PubMed]
    [Google Scholar]
  31. Sokolova T. G., Henstra A.-M., Sipma J., Parshina S. N., Stams A. J. M., Lebedinsky A. V.. ( 2009;). Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. . FEMS Microbiol Ecol 68:, 131–141. [CrossRef][PubMed]
    [Google Scholar]
  32. Svetlitchnyi V., Peschel C., Acker G., Meyer O.. ( 2001;). Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. . J Bacteriol 183:, 5134–5144. [CrossRef][PubMed]
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  34. Techtmann S. M., Colman A. S., Robb F. T.. ( 2009;). ‘That which does not kill us only makes us stronger’: the role of carbon monoxide in thermophilic microbial consortia. . Environ Microbiol 11:, 1027–1037. [CrossRef][PubMed]
    [Google Scholar]
  35. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  36. Vannier P., Marteinsson V. T., Fridjonsson O. H., Oger P., Jebbar M.. ( 2011;). Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. . J Bacteriol 193:, 1481–1482. [CrossRef][PubMed]
    [Google Scholar]
  37. Wiegel J., Braun M., Gottschalk G.. ( 1981;). Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. . Curr Microbiol 5:, 255–260. [CrossRef]
    [Google Scholar]
  38. Wolin E. A., Wolin M. J., Wolfe R. S.. ( 1963;). Formation of methane by bacterial extracts. . J Biol Chem 238:, 2882–2886.[PubMed]
    [Google Scholar]
  39. Yoneda Y., Yoshida T., Kawaichi S., Daifuku T., Takabe K., Sako Y.. ( 2012;). Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring. . Int J Syst Evol Microbiol 62:, 1692–1697. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050468-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050468-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error