1887

Abstract

Two Gram-stain-negative, facultatively anaerobic and endospore-forming rod-shaped bacterial strains, THMBG22 and R24, were isolated from decomposing algal scum. Phylogenetic analysis of 16S rRNA gene sequences showed that the two strains were closely related to each other (99.7 % similarity) and that they were also closely related to DSM 23054 (97–97.1 %) and DSM 17399 (96.1–96.4 %). This affiliation was also supported by -based phylogenetic analyses. Growth was observed at 20–40 °C (optimum, 30–37 °C) and at pH 5.0–9.0 (optimum, pH 6.0–7.0). The cells contained MK-7 as the sole respiratory quinone and anteiso-C as the major cellular fatty acid. Their cellular polar lipids were composed of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and 12 unidentified polar lipids. The diamino acid of their cell-wall peptidoglycan was diaminopimelic acid. The DNA–DNA hybridization value between THMBG22 and R24 was 84 %, and DNA–DNA relatedness to the most closely related species with a validly published name ( ) was 35–37 %. These results supported the assignment of the new isolates to the genus and also distinguished them from the previously described species of the genus . Hence, it is proposed that strains THMBG22 and R24 represent a novel species of the genus , with the name sp. nov. The type strain is THMBG22 ( = CGMCC 1.10966 = NBRC 108766).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050419-0
2013-10-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3652.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050419-0&mimeType=html&fmt=ahah

References

  1. Adékambi T., Shinnick T. M., Raoult D., Drancourt M.. ( 2008;). Complete rpoB gene sequencing as a suitable supplement to DNA–DNA hybridization for bacterial species and genus delineation. . Int J Syst Evol Microbiol 58:, 1807–1814. [CrossRef][PubMed]
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D.. ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. . Antonie van Leeuwenhoek 64:, 253–260. [CrossRef][PubMed]
    [Google Scholar]
  3. Baik K. S., Choe H. N., Park S. C., Kim E. M., Seong C. N.. ( 2011;). Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. . Int J Syst Evol Microbiol 61:, 2763–2768. [CrossRef][PubMed]
    [Google Scholar]
  4. Barrow G. I., Feltham, R. K. A.. (editors) ( 1993;). Cowan and Steel's Manual for Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  5. Berg K. A., Lyra C., Sivonen K., Paulin L., Suomalainen S., Tuomi P., Rapala J.. ( 2009;). High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. . ISME J 3:, 314–325. [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  7. Dahllöf I., Baillie H., Kjelleberg S.. ( 2000;). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. . Appl Environ Microbiol 66:, 3376–3380. [CrossRef][PubMed]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  11. Glaeser S. P., Falsen E., Busse H. J., Kämpfer P.. ( 2013;). Paenibacillus vulneris sp. nov., isolated from a necrotic wound. . Int J Syst Evol Microbiol 63:, 777–782. [CrossRef][PubMed]
    [Google Scholar]
  12. Grossart H. P., Czub G., Simon M.. ( 2006;). Algae-bacteria interactions and their effects on aggregation and organic matter flux in the sea. . Environ Microbiol 8:, 1074–1084. [CrossRef][PubMed]
    [Google Scholar]
  13. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  14. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H. J., Tindall B. J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim B. C., Lee K. H., Kim M. N., Kim E. M., Rhee M. S., Kwon O. Y., Shin K. S.. ( 2009;). Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora. . J Microbiol 47:, 530–535. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim K. K., Lee K. C., Yu H., Ryoo S., Park Y., Lee J. S.. ( 2010;). Paenibacillus sputi sp. nov., isolated from the sputum of a patient with pulmonary disease. . Int J Syst Evol Microbiol 60:, 2371–2376. [CrossRef][PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  18. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 177–182.
    [Google Scholar]
  19. Kong B. H., Liu Q. F., Liu M., Liu Y., Liu L., Li C. L., Yu R., Li Y. H.. ( 2013;). Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L.. Int J Syst Evol Microbiol 63:, 1037–1044. [CrossRef][PubMed]
    [Google Scholar]
  20. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  21. Li H., Xing P., Wu Q. L.. ( 2012;). Characterization of the bacterial community composition in a hypoxic zone induced by Microcystis blooms in Lake Taihu, China. . FEMS Microbiol Ecol 79:, 773–784. [CrossRef][PubMed]
    [Google Scholar]
  22. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  23. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  24. Minnikin D. E., Odonnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  25. Moon J. C., Jung Y. J., Jung J. H., Jung H. S., Cheong Y. R., Jeon C. O., Lee K. O., Lee S. Y.. ( 2011;). Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. . Int J Syst Evol Microbiol 61:, 2753–2757. [CrossRef][PubMed]
    [Google Scholar]
  26. Paerl H. W., Dyble J., Moisander P. H., Noble R. T., Piehler M. F., Pinckney J. L., Steppe T. F., Twomey L., Valdes L. M.. ( 2003;). Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. . FEMS Microbiol Ecol 46:, 233–246. [CrossRef][PubMed]
    [Google Scholar]
  27. Paerl H. W., Xu H., McCarthy M. J., Zhu G. W., Qin B. Q., Li Y. P., Gardner W. S.. ( 2011;). Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. . Water Res 45:, 1973–1983. [CrossRef][PubMed]
    [Google Scholar]
  28. Rivas R., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2005;). Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. . Int J Syst Evol Microbiol 55:, 743–746. [CrossRef][PubMed]
    [Google Scholar]
  29. Ronimus R. S., Parker L. E., Morgan H. W.. ( 1997;). The utilization of RAPD-PCR for identifying thermophilic and mesophilic Bacillus species. . FEMS Microbiol Lett 147:, 75–79. [CrossRef][PubMed]
    [Google Scholar]
  30. Saha P., Krishnamurthi S., Bhattacharya A., Sharma R., Chakrabarti T.. ( 2010;). Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. . Int J Syst Evol Microbiol 60:, 422–428. [CrossRef][PubMed]
    [Google Scholar]
  31. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  32. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  33. Schaeffer A. B., Fulton M. D.. ( 1933;). A simplified method of staining endospores. . Science 77:, 194. [CrossRef][PubMed]
    [Google Scholar]
  34. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. ( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. . Int J Syst Bacteriol 47:, 289–298. [CrossRef][PubMed]
    [Google Scholar]
  35. Shungu D., Valiant M., Tutlane V., Weinberg E., Weissberger B., Koupal L., Gadebusch H., Stapley E.. ( 1983;). Gelrite as an agar substitute in bacteriological media. . Appl Environ Microbiol 46:, 840–845.[PubMed]
    [Google Scholar]
  36. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  37. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  38. Tang Q. Y., Yang N., Wang J., Xie Y. Q., Ren B., Zhou Y. G., Gu M. Y., Mao J., Li W. J.. & other authors ( 2011;). Paenibacillus algorifonticola sp. nov., isolated from a cold spring. . Int J Syst Evol Microbiol 61:, 2167–2172. [CrossRef][PubMed]
    [Google Scholar]
  39. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  40. Valverde A., Fterich A., Mahdhi M., Ramírez-Bahena H., Caviedes M. A., Mars M., Velázquez E., Rodriguez-Llorente I.. ( 2010;). Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta. . Int J Syst Evol Microbiol 60:, 2182–2186. [CrossRef][PubMed]
    [Google Scholar]
  41. Vaz-Moreira I., Figueira V., Lopes A. R., Pukall R., Spröer C., Schumann P., Nunes O. C., Manaia C. M.. ( 2010;). Paenibacillus residui sp. nov., isolated from urban waste compost. . Int J Syst Evol Microbiol 60:, 2415–2419. [CrossRef][PubMed]
    [Google Scholar]
  42. Wu X., Fang H., Qian C., Wen Y., Shen X., Li O., Gao H.. ( 2011;). Paenibacillus tianmuensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 1133–1137. [CrossRef][PubMed]
    [Google Scholar]
  43. Wu Y. F., Wu Q. L., Liu S. J.. ( 2013;). Chryseobacterium taihuense sp. nov., isolated from an eutrophic lake and emended descriptions of the genus Chryseobacterium, C.taiwanense, C. jejuense and C. indoltheticum. . Int J Syst Evol Microbiol 63:, 913–919. [CrossRef][PubMed]
    [Google Scholar]
  44. Xing P., Guo L., Tian W., Wu Q. L.. ( 2011;). Novel Clostridium populations involved in the anaerobic degradation of Microcystis blooms. . ISME J 5:, 792–800. [CrossRef][PubMed]
    [Google Scholar]
  45. Zhang D., Yang H., Zhang W., Huang Z., Liu S. J.. ( 2003;). Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. . Int J Syst Evol Microbiol 53:, 1111–1114. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050419-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050419-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error