1887

Abstract

Strain MBR was isolated from landfill leachate in a solid-waste disposal site in Chengdu, Sichuan, China. An analysis of 16S rRNA gene sequences revealed that the isolate was closely related to members of the genus , sharing the highest sequence similarities with HT-3 (99.8 %), AL15-21 (99.7 %) and ATCC 8062 (99.4 %). Multi-locus sequence analysis based on three housekeeping genes (, and ) provided higher resolution at the species level than that based on 16S rRNA gene sequences, which was further confirmed by less than 70 % DNA–DNA relatedness between the new isolate and HT-3 (61.3 %), AL15-21 (51.5 %) and ATCC 8062 (57.8 %). The DNA G+C content of strain MBR was 61.9 mol% and the major ubiquinone was Q-9. The major cellular fatty acids (>10 %) were Cω7 and/or Cω6, C, and Cω7 and/or Cω6. Polyphasic analysis indicates that strain MBR represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MBR ( = CGMCC 2318 = DSM 26382).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050294-0
2014-01-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/95.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050294-0&mimeType=html&fmt=ahah

References

  1. Carlson C. A., Ingraham J. L.. ( 1983;). Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. . Appl Environ Microbiol 45:, 1247–1253.[PubMed]
    [Google Scholar]
  2. Clescerl L. S., Greenberg A. E., Eaton A. N.. ( 1998;). Standard Methods for the Examination of Water and Wastewater, , 20th edn.. Washington, DC:: American Public Health Association;.
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  4. Hirota K., Yamahira K., Nakajima K., Nodasaka Y., Okuyama H., Yumoto I.. ( 2011;). Pseudomonas toyotomiensis sp. nov., a psychrotolerant facultative alkaliphile that utilizes hydrocarbons. . Int J Syst Evol Microbiol 61:, 1842–1848. [CrossRef][PubMed]
    [Google Scholar]
  5. Huss V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  6. Jiang H., He X., Zhang L., Tao Y., Wang X., Gao P., Li D.. ( 2010;). [Reduction of selenite to elemental red selenium under aerobic condition by Pseudomonas alcaliphila MBR]. . Wei Sheng Wu Xue Bao 50:, 1347–1352 (in Chinese).[PubMed]
    [Google Scholar]
  7. Kämpfer P., Glaeser S. P.. ( 2012;). Prokaryotic taxonomy in the sequencing era–the polyphasic approach revisited. . Environ Microbiol 14:, 291–317. [CrossRef][PubMed]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  9. Küpfer M., Kuhnert P., Korczak B. M., Peduzzi R., Demarta A.. ( 2006;). Genetic relationships of Aeromonas strains inferred from 16S rRNA, gyrB and rpoB gene sequences. . Int J Syst Evol Microbiol 56:, 2743–2751. [CrossRef][PubMed]
    [Google Scholar]
  10. Maiden M. C., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K. et al. ( 1998;). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. . Proc Natl Acad Sci U S A 95:, 3140–3145. [CrossRef][PubMed]
    [Google Scholar]
  11. Mulet M., Lalucat J., García-Valdés E.. ( 2010;). DNA sequence-based analysis of the Pseudomonas species. . Environ Microbiol 12:, 1513–1530.[PubMed]
    [Google Scholar]
  12. Noel R. K., Penelope J. P.. ( 2011;). Phenotypic and physiological characterization methods. . In Taxonomy of Prokaryotes, Methods in Microbiology, vol. 38, pp. 15–60. Edited by Rainey F., Oren A... London:: Academic Press;. [CrossRef]
    [Google Scholar]
  13. Palleroni N. J.. ( 1993–1994;). Pseudomonas classification. A new case history in the taxonomy of gram-negative bacteria. . Antonie van Leeuwenhoek 64:, 231–251. [CrossRef][PubMed]
    [Google Scholar]
  14. Palleroni N. J.. ( 2003;). Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. . Microbiology 149:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  15. Pascual J., Lucena T., Ruvira M. A., Giordano A., Gambacorta A., Garay E., Arahal D. R., Pujalte M. J., Macián M. C.. ( 2012;). Pseudomonas litoralis sp. nov., isolated from Mediterranean seawater. . Int J Syst Evol Microbiol 62:, 438–444. [CrossRef][PubMed]
    [Google Scholar]
  16. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  17. Romano I., Nicolaus B., Lama L., Trabasso D., Caracciolo G., Gambacorta A.. ( 2001;). Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense. . Syst Appl Microbiol 24:, 342–352. [CrossRef][PubMed]
    [Google Scholar]
  18. Saha R., Spröer C., Beck B., Bagley S.. ( 2010;). Pseudomonas oleovorans subsp. lubricantis subsp. nov., and reclassification of Pseudomonas pseudoalcaligenes ATCC 17440T as later synonym of Pseudomonas oleovorans ATCC 8062T. . Curr Microbiol 60:, 294–300. [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  21. Su W., Zhang L., Li D., Zhan G., Qian J., Tao Y.. ( 2012;). Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. . Biotechnol Bioeng 109:, 2904–2910. [CrossRef][PubMed]
    [Google Scholar]
  22. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S.. ( 2001;). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov.. Int J Syst Evol Microbiol 51:, 1639–1652. [CrossRef][PubMed]
    [Google Scholar]
  23. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  27. Xin Y. H., Zhang D. C., Liu H. C., Zhou H. L., Zhou Y. G.. ( 2009;). Pseudomonas tuomuerensis sp. nov., isolated from a bird’s nest. . Int J Syst Evol Microbiol 59:, 139–143. [CrossRef][PubMed]
    [Google Scholar]
  28. Yamamoto S., Harayama S.. ( 1998;). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. . Int J Syst Bacteriol 48:, 813–819. [CrossRef][PubMed]
    [Google Scholar]
  29. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K.. ( 2001;). Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. . Int J Syst Evol Microbiol 51:, 349–355.[PubMed]
    [Google Scholar]
  30. Zhan G., Li D., Zhang L.. ( 2012;). Aerobic bioreduction of nickel(II) to elemental nickel with concomitant biomineralization. . Appl Microbiol Biotechnol 96:, 273–281. [CrossRef][PubMed]
    [Google Scholar]
  31. Zhang L., He X. H., Zhang L. X., Tao Y., Wang X. M., Zhan G. Q., Li D. P.. ( 2011a;). [ Characterization of aerobic reduction of tellurite by Pseudomonas sp. MBR. .] Chin J Appl Environ Biol 17:, 126–129. (in Chinese). [CrossRef]
    [Google Scholar]
  32. Zhang T., Zhang L., Su W., Gao P., Li D., He X., Zhang Y.. ( 2011b;). The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells. . Bioresour Technol 102:, 7099–7102. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050294-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050294-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error