1887

Abstract

Thirteen strains of yeasts were isolated from ambrosia beetle galleries at several sites in Japan. Based on the morphological and biochemical characteristics and phylogenetic analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene of the yeasts, 10 strains were shown to represent a novel species of the genus , described as sp. nov. (type strain NBRC 11029 = CBS 12186), and were closely related to . The three other strains represented a novel species of the genus , described as sp. nov. (type strain NBRC 11048 = CBS 12187), and were closely related to . It is suggested that these species are associated with ambrosia beetles and we consider ambrosia beetle galleries as good sources of novel yeasts.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050195-0
2013-07-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2706.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050195-0&mimeType=html&fmt=ahah

References

  1. Banno I., Mikata K., Kodama K.. ( 1983;). Ascomycetous yeast isolated from galleries of the ambrosia beetles in Japan. . Trans Mycol Soc Japan 24:, 441–450.
    [Google Scholar]
  2. Batra L. R.. ( 1966;). Ambrosia fungi: extent of specificity to ambrosia beetles. . Science 153:, 193–195. [CrossRef][PubMed]
    [Google Scholar]
  3. de García V., Brizzio S., Libkind D., Rosa C. A., van Broock M. R.. ( 2010;). Wickerhamomyces patagonicus sp. nov., an ascomycetous yeast species from Patagonia, Argentina. . Int J Syst Evol Microbiol 60:, 1693–1696. [CrossRef][PubMed]
    [Google Scholar]
  4. Endoh R., Suzuki M., Benno Y.. ( 2008a;). Ambrosiozyma kamigamensis sp. nov. and A. neoplatypodis sp. nov., two new ascomycetous yeasts from ambrosia beetle galleries. . Antonie van Leeuwenhoek 94:, 365–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Endoh R., Suzuki M., Benno Y., Futai K.. ( 2008b;). Candida kashinagacola sp. nov., C. pseudovanderkliftii sp. nov. and C. vanderkliftii sp. nov., three new yeasts from ambrosia beetle-associated sources. . Antonie van Leeuwenhoek 94:, 389–402. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Groenewald M., Robert V., Smith M. Th.. ( 2011;). Five novel Wickerhamomyces- and Metschnikowia-related yeast species, Wickerhamomyces chaumierensis sp. nov., Candida pseudoflosculorum sp. nov., Candida danieliae sp. nov., Candida robnettiae sp. nov. and Candida eppingiae sp. nov., isolated from plants. . Int J Syst Evol Microbiol 61:, 2015–2022. [CrossRef][PubMed]
    [Google Scholar]
  8. Holm C., Meeks-Wagner D. W., Fangman W. L., Botstein D.. ( 1986;). A rapid, efficient method for isolating DNA from yeast. . Gene 42:, 169–173. [CrossRef][PubMed]
    [Google Scholar]
  9. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  10. Kurtzman C. P.. ( 2011a;). Wickerhamomyces. . In The Yeasts, a Taxonomic Study, , 5th edn., vol. 1, pp. 899–917. Edited by Kurtzman C. P., Fell J. W., Boekhout T... Amsterdam:: Elsevier;. [CrossRef]
    [Google Scholar]
  11. Kurtzman C. P.. ( 2011b;). Lindnera. . In The Yeasts, a Taxonomic Study, , 5th edn., vol. 1, pp. 521–543. Edited by Kurtzman C. P., Fell J. W., Boekhout T... Amsterdam:: Elsevier;. [CrossRef]
    [Google Scholar]
  12. Kurtzman C. P., Robnett C. J.. ( 1998;). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. . Antonie van Leeuwenhoek 73:, 331–371. [CrossRef][PubMed]
    [Google Scholar]
  13. Kurtzman C. P., Robnett C. J., Basehoar-Powers E.. ( 2008;). Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov.. FEMS Yeast Res 8:, 939–954. [CrossRef][PubMed]
    [Google Scholar]
  14. Limtong S., Yongmanitchai W., Kawasaki H., Fujiyama K.. ( 2009;). Wickerhamomyces edaphicus sp. nov. and Pichia jaroonii sp. nov., two ascomycetous yeast species isolated from forest soil in Thailand. . FEMS Yeast Res 9:, 504–510. [CrossRef][PubMed]
    [Google Scholar]
  15. Limtong S., Nitiyon S., Kaewwichian R., Jindamorakot S., Am-In S., Yongmanitchai W.. ( 2012;). Wickerhamomyces xylosica sp. nov. and Candida phayaonensis sp. nov., two xylose-assimilating yeast species from soil. . Int J Syst Evol Microbiol 62:, 2786–2792. [CrossRef][PubMed]
    [Google Scholar]
  16. Mestre M. C., Rosa C. A., Fontenla S. B.. ( 2011;). Lindnera rhizosphaerae sp. nov., a yeast species isolated from rhizospheric soil. . Int J Syst Evol Microbiol 61:, 985–988. [CrossRef][PubMed]
    [Google Scholar]
  17. Mikata K., Banno I.. ( 1989;). Preservation of yeast cultures by L-drying: viability after 5 years of storage at 5 °C. . Inst Ferment Osaka Res Commun 14:, 80–103.
    [Google Scholar]
  18. Mikata K., Yamada Y.. ( 1999;). The ubiquinone system in Hasegawaea Japonica (Yukawa et Maki) Yamada et Banno: a new method for identifying ubiquinone homologs from yeast cells. . Inst Ferment Osaka Res Commun 19:, 41–46.
    [Google Scholar]
  19. Minter D. W.. ( 2009;). Cyberlindnera, a replacement name for Lindnera Kurtzman et al., nom. illegit.. Mycotaxon 110:, 473–476. [CrossRef]
    [Google Scholar]
  20. Nakase T., Ninomiya S., Imanishi Y., Nakagiri A., Kawasaki H., Limtong S.. ( 2008;). Ogataea paradorogensis sp. nov., a novel methylotrophic ascomycetous yeast species isolated from galleries of ambrosia beetles in Japan, with a close relation to Pichia dorogensis. . J Gen Appl Microbiol 54:, 377–383. [CrossRef][PubMed]
    [Google Scholar]
  21. Nakase T., Jindamorakot S., Am-In S., Ninomiya S., Kawasaki H.. ( 2012;). Wickerhamomyces tratensis sp. nov. and Candida namnaoensis sp. nov., two novel ascomycetous yeast species in the Wickerhamomyces clade found in Thailand. . J Gen Appl Microbiol 58:, 145–152. [CrossRef][PubMed]
    [Google Scholar]
  22. Ninomiya S., Mikata K., Nakagiri A., Nakase T., Kawasaki H.. ( 2010;). Pichia porticicola sp. nov., a novel ascomycetous yeast related to Pichia acaciae isolated from galleries of ambrosia beetles in Japan. . J Gen Appl Microbiol 56:, 281–286. [CrossRef][PubMed]
    [Google Scholar]
  23. O’Donnell K.. ( 1993;). Fusarium and its near relatives. . In The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics, pp. 225–233. Edited by Reynolds D. R., Taylor J. W... Wallingford:: CAB International;.
    [Google Scholar]
  24. Rosa C. A., Morais P. B., Lachance M. A., Santos R. O., Melo W. G. P., Viana R. H. O., Bragança M. A. L., Pimenta R. S.. ( 2009;). Wickerhamomyces queroliae sp. nov. and Candida jalapaonensis sp. nov., two yeast species isolated from Cerrado ecosystem in North Brazil. . Int J Syst Evol Microbiol 59:, 1232–1236. [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Shin K. S., Bae K. S., Lee K. H., Park D. S., Kwon G. S., Lee J. B.. ( 2011;). Wickerhamomyces ochangensis sp. nov., an ascomycetous yeast isolated from the soil of a potato field. . Int J Syst Evol Microbiol 61:, 2543–2546. [CrossRef][PubMed]
    [Google Scholar]
  27. Suh S. O., Zhou J.. ( 2010;). Yeasts associated with the curculionid beetle Xyloterinus politus: Candida xyloterini sp. nov., Candida palmyrensis sp. nov. and three common ambrosia yeasts. . Int J Syst Evol Microbiol 60:, 1702–1708. [CrossRef][PubMed]
    [Google Scholar]
  28. Tamaoka M., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  30. van der Walt J. P.. ( 1972;). The yeast genus Ambrosiozyma gen. nov. (Ascomycetes).. Mycophathol. Mycol. Appl. 46:, 305–316. [CrossRef]
    [Google Scholar]
  31. White T. J., Bruns T., Lee S., Taylor J.. ( 1990;). Amplification direct and sequencing of fungal ribosomal RNA genes for phylogenetics. . In PCR Protocols: a Guide to Methods and Applications, pp. 315–322. Edited by Innis M. A., Gelfand D. H., Snisky J. J., White T. J... San Diego, CA:: Academic Press;.
    [Google Scholar]
  32. Yarrow D.. ( 1998;). Methods for the isolation, maintenance and identification of yeasts. . In The Yeasts, a Taxonomic Study, , 4th edn., pp. 77–100. Edited by Kurtzman C. P., Fell J. W... Amsterdam:: Elsevier;. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050195-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050195-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error