1887

Abstract

Two novel Gram-stain-negative, motile, catalase-negative and oxidase-positive strains of bacteria (JC131 and JC112) were isolated from Lonar, a soda lake in India. Based on 16S rRNA gene sequence similarity studies, strains JC131 and JC112 belong to the family of the class and were most closely related to DQHS21 (98.0 %) and CL-GR15 (96.0 %). Polar lipids of strains JC131 and JC112 include phosphatidylglycerol, phosphatidylethnolamine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol and two unidentified lipids (L1 and L2). Both strains have diplopterol, diploptene, an unidentified hopane (UH) and bacteriohopane derivatives (BHD1 and 2) as major hopanoids and an unidentified pigment (P1). The predominant isoprenoid quinone of both strains was ubiquinone-10 (Q10). Whole-cell fatty acid analysis of both strains revealed that Cω7 was the predominant cellular fatty acid and significant proportions of C, summed feature 3 (Cω7 and/or iso-C 2-OH), 11-methyl Cω7, Cω9, C and Cω7 were also detected. The DNA G+C content of strains JC131 and JC112 was 54.6 and 53.8 mol%, respectively. The genome reassociation (based on DNA–DNA hybridization) of strains JC131 and JC112 with NCCB 100300 ( = DQHS21) was about 58 %, while between JC131 and JC112 it was about 87 %. On the basis of physiological, biochemical and chemotaxonomical properties, strains JC131 and JC112 are differentiated from the other two members of the genus . Strains JC131 and JC112 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JC131 ( = KCTC 32038 = NBRC 109022). An emended description of the genus is presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050112-0
2013-11-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4271.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050112-0&mimeType=html&fmt=ahah

References

  1. Barrow K. D., Chuck J. A.. ( 1990;). Determination of hopanoid levels in bacteria using high-performance liquid chromatography. . Anal Biochem 184:, 395–399. [CrossRef][PubMed]
    [Google Scholar]
  2. Chakravarthy S. K., Ramaprasad E. V. V., Shobha E., Sasikala Ch., Ramana Ch. V.. ( 2012;). Rhodoplanes piscinae sp. nov. isolated from pond water. . Int J Syst Evol Microbiol 62:, 2828–2834. [CrossRef][PubMed]
    [Google Scholar]
  3. Hiraishi A., Hoshino Y.. ( 1984;). Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. . J Gen Appl Microbiol 30:, 435–448. [CrossRef]
    [Google Scholar]
  4. Hiraishi A., Hoshino Y., Kitamura H.. ( 1984;). Isoprenoid quinone composition in the classification of Rhodospirillaceae. . J Gen Appl Microbiol 30:, 197–210. [CrossRef]
    [Google Scholar]
  5. Hwang C. Y., Cho B. C.. ( 2008;). Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov.. Int J Syst Evol Microbiol 58:, 267–277. [CrossRef][PubMed]
    [Google Scholar]
  6. Kates M.. ( 1972;). Techniques of Lipidology. New York:: Elsevier;.
    [Google Scholar]
  7. Kates M.. ( 1986;). Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids. Amsterdam:: Elsevier;.
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  9. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  10. Lakshmi K. V. N. S., Sasikala Ch., Ashok Kumar G. V., Chandrasekaran R., Ramana Ch. V.. ( 2011;). Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. . Int J Syst Evol Microbiol 61:, 828–833. [CrossRef][PubMed]
    [Google Scholar]
  11. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  13. Oren A., Duker S., Ritter S.. ( 1996;). The polar lipid composition of Walsby’s square bacterium. . FEMS Microbiol Lett 138:, 135–140. [CrossRef]
    [Google Scholar]
  14. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  15. Qu L., Lai Q., Zhu F., Hong X., Sun X., Shao Z.. ( 2011;). Cohaesibacter marisflavi sp. nov., isolated from sediment of a seawater pond used for sea cucumber culture, and emended description of the genus Cohaesibacter. . Int J Syst Evol Microbiol 61:, 762–766. [CrossRef][PubMed]
    [Google Scholar]
  16. Ramana V. V., Chakravarthy S. K., Raj P. S., Kumar B. V., Shobha E., Ramaprasad E. V. V., Sasikala Ch., Ramana Ch. V.. ( 2012;). Descriptions of Rhodopseudomonas parapalustris sp. nov., Rhodopseudomonas harwoodiae sp. nov. and Rhodopseudomonas pseudopalustris sp. nov., and emended description of Rhodopseudomonas palustris. . Int J Syst Evol Microbiol 62:, 1790–1798. [CrossRef][PubMed]
    [Google Scholar]
  17. Rohmer M., Bouvier-Nave P., Ourisson G.. ( 1984;). Distribution of hopanoid triterpenes in prokaryotes. . J Gen Microbiol 130:, 1137–1150.
    [Google Scholar]
  18. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
  19. Smibert R. M., Krieg N. R.. ( 1981;). General characterization. . In Manual of Methods for General Microbiology, pp. 409–443. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 4:, 152–155.
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M.. ( 1994;). Place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  24. Tindall B. J.. ( 1990a;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  25. Tindall B. J.. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  26. Widdel F.. ( 1983;). Methods for enrichment and pure culture isolation of filamentous gliding sulfate-reducing bacteria. . Arch Microbiol 134:, 282–285. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050112-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050112-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error