1887

Abstract

A thermotolerant, alkalitolerant, Gram-stain-negative and strictly aerobic bacterium, designated strain YIM 77974, was isolated from a geothermally heated soil sample collected at Rehai National Park, Tengchong, Yunnan province, south-west China. Cells of the strain were rod-shaped and colonies were light brown and circular. The strain grew in the presence of 0–3 % (w/v) NaCl (optimum, 0–1 %) and at pH 7.0–10.0 (optimum, pH 8.0) and 30–55 °C (optimum, 45 °C). The only quinone was Q-8 and the genomic DNA G+C content was 68.3 mol%. Major fatty acids (>10 %) were iso-C, iso-C, iso-C and iso-C. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminophospholipid, three unidentified phospholipids and two unidentified polar lipids. On the basis of the morphological and chemotaxonomic characteristics as well as genotypic data, it is proposed that this strain should be classified as a representative of a novel genus and species, gen. nov., sp. nov., in the family . The type strain is strain YIM 77974 ( = DSM 25897 = CCTCC AB 2012062).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049973-0
2013-11-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4058.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049973-0&mimeType=html&fmt=ahah

References

  1. Busse H. J., Kämpfer P., Moore E. R. B., Nuutinen J., Tsitko I. V., Denner E. B., Vauterin L., Valens M., Rosselló-Mora R., Salkinoja-Salonen M. S.. ( 2002;). Thermomonas haemolytica gen. nov., sp. nov., a γ-proteobacterium from kaolin slurry. . Int J Syst Evol Microbiol 52:, 473–483.[PubMed]
    [Google Scholar]
  2. Cerny G.. ( 1978;). Studies on aminopeptidase for the distinction of Gram-negative from Gram-positive bacteria. . Eur J Appl Microbiol Biotechnol 5:, 113–122. [CrossRef]
    [Google Scholar]
  3. Chou J. H., Cho N. T., Arun A. B., Young C. C., Chen W. M.. ( 2008;). Luteimonas aquatica sp. nov., isolated from fresh water from Southern Taiwan. . Int J Syst Evol Microbiol 58:, 2051–2055. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diaminobutyric acid. . Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in Actinomycetes and Corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Finkmann W., Altendorf K., Stackebrandt E., Lipski A.. ( 2000;). Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov.. Int J Syst Evol Microbiol 50:, 273–282. [CrossRef][PubMed]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim M. K., Im W. T., In J. G., Kim S. H., Yang D. C.. ( 2006;). Thermomonas koreensis sp. nov., a mesophilic bacterium isolated from a ginseng field. . Int J Syst Evol Microbiol 56:, 1615–1619. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  14. Kroppenstedt R. M.. ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. . J Liq Chromatogr 5:, 2359–2387. [CrossRef]
    [Google Scholar]
  15. Kumari K., Sharma P., Tyagi K., Lal R.. ( 2011;). Pseudoxanthomonas indica sp. nov., isolated from a hexachlorocyclohexane dumpsite. . Int J Syst Evol Microbiol 61:, 2107–2111. [CrossRef][PubMed]
    [Google Scholar]
  16. Lee E. M., Jeon C. O., Choi I., Chang K. S., Kim C. J.. ( 2005;). Silanimonas lenta gen. nov., sp. nov., a slightly thermophilic and alkaliphilic gammaproteobacterium isolated from a hot spring. . Int J Syst Evol Microbiol 55:, 385–389. [CrossRef][PubMed]
    [Google Scholar]
  17. Lee D. S., Ryu S. H., Hwang H. W., Kim Y.-J., Park M., Lee J. R., Lee S.-S., Jeon C. O.. ( 2008;). Pseudoxanthomonas sacheonensis sp. nov., isolated from BTEX-contaminated soil in Korea, transfer of Stenotrophomonas dokdonensis Yoon et al. 2006 to the genus Pseudoxanthomonas as Pseudoxanthomonas dokdonensis comb. nov. and emended description of the genus Pseudoxanthomonas. . Int J Syst Evol Microbiol 58:, 2235–2240. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee M., Woo S. G., Chae M., Shin M. C., Jung H. M., Ten L. N.. ( 2011;). Stenotrophomonas daejeonensis sp. nov., isolated from sewage. . Int J Syst Evol Microbiol 61:, 598–604. [CrossRef][PubMed]
    [Google Scholar]
  19. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. . Int J Syst Evol Microbiol 57:, 1424–1428. [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  22. Palleroni N. J.. ( 1984;). Genus I. Pseudomonas Migula 1894, 237AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 141–199. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  23. Palleroni N. J., Bradbury J. F.. ( 1993;). Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. . Int J Syst Bacteriol 43:, 606–609. [CrossRef][PubMed]
    [Google Scholar]
  24. Park Y. J., Park M. S., Lee S. H., Park W., Lee K., Jeon C. O.. ( 2011;). Luteimonas lutimaris sp. nov., isolated from a tidal flat. . Int J Syst Evol Microbiol 61:, 2729–2733. [CrossRef][PubMed]
    [Google Scholar]
  25. Ramos P. L., Van Trappen S., Thompson F. L., Rocha R. C. S., Barbosa H. R., De Vos P., Moreira-Filho C. A.. ( 2011;). Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov.. Int J Syst Evol Microbiol 61:, 926–931. [CrossRef][PubMed]
    [Google Scholar]
  26. Roh S. W., Kim K. H., Nam Y. D., Chang H. W., Kim M. S., Yoon J. H., Oh H. M., Bae J. W.. ( 2008;). Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. . J Microbiol 46:, 525–529. [CrossRef][PubMed]
    [Google Scholar]
  27. Romanenko L. A., Tanaka N., Svetashev V. I., Kurilenko V. V., Mikhailov V. V.. ( 2013;). Luteimonas vadosa sp. nov., isolated from seashore sediment. . Int J Syst Evol Microbiol 63:, 1261–1266. [CrossRef][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Srinivas T. N. R., Kailash T. B., Anil Kumar P.. ( 2013;). Silanimonas mangrovi sp. nov., a member of the family Xanthomonadaceae isolated from mangrove sediment, and emended description of the genus Silanimonas. . Int J Syst Evol Microbiol 63:, 274–279. [CrossRef][PubMed]
    [Google Scholar]
  30. Sun Z. B., Zhang H., Yuan X. F., Wang Y. X., Feng D. M., Wang Y. H., Feng Y. J.. ( 2012;). Luteimonas cucumeris sp. nov., isolated a from cucumber leaf. . Int J Syst Evol Microbiol 62:, 2916–2920. [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  32. Tóth E., Kovács G., Schumann P., Kovács A. L., Steiner U., Halbritter A., Márialigeti K.. ( 2001;). Schineria larvae gen. nov., sp. nov., isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae). . Int J Syst Evol Microbiol 51:, 401–407.[PubMed]
    [Google Scholar]
  33. Vauterin L., Hoste B., Kersters K., Swings J.. ( 1995;). Reclassification of Xanthomonas. . Int J Syst Bacteriol 45:, 472–489. [CrossRef]
    [Google Scholar]
  34. Vauterin L., Yang P., Swings J.. ( 1996;). Utilization of fatty acid methyl esters for the differentiation of new Xanthomonas species. . Int J Syst Bacteriol 46:, 298–304. [CrossRef]
    [Google Scholar]
  35. Wang G. L., Bi M., Liang B., Jiang J. D., Li S. P.. ( 2011;). Pseudoxanthomonas jiangsuensis sp. nov., a DDT-degrading bacterium isolated from a long-term DDT-polluted soil. . Curr Microbiol 62:, 1760–1766. [CrossRef][PubMed]
    [Google Scholar]
  36. Wei D. Q., Yu T. T., Yao J. C., Zhou E. M., Song Z. Q., Yin Y. R., Ming H., Tang S. K., Li W. J.. ( 2012;). Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China. . Antonie van Leeuwenhoek 102:, 643–651. [CrossRef][PubMed]
    [Google Scholar]
  37. Wells J. M., Raju B. C., Hung H.-Y., Weisburg W. G., Mandelco-Paul L., Brenner D. J.. ( 1987;). Xylella fastidiosa gen. nov., sp. nov. Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp.. Int J Syst Bacteriol 37:, 136–143. [CrossRef]
    [Google Scholar]
  38. Wu G., Liu Y., Li Q., Du H., You J., Li H., Ke C., Zhang X., Yu J., Zhao T.. ( 2013;). Luteimonas huabeiensis sp. nov., isolated from stratum water in Huabei Oilfield. . Int J Syst Evol Microbiol. [CrossRef][PubMed]
    [Google Scholar]
  39. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  40. Young C. C., Ho M. J., Arun A. B., Chen W. M., Lai W. A., Shen F. T., Rekha P. D., Yassin A. F.. ( 2007;). Pseudoxanthomonas spadix sp. nov., isolated from oil-contaminated soil. . Int J Syst Evol Microbiol 57:, 1823–1827. [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang D. C., Liu H. C., Xin Y. H., Zhou Y. G., Schinner F., Margesin R.. ( 2010;). Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. . Int J Syst Evol Microbiol 60:, 1581–1584. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049973-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049973-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error