1887

Abstract

Twelve strains of iron-oxidizing acidithiobacilli isolated from acidic sites throughout the world, including some previously shown by multi-locus sequence analyses and DNA–DNA hybridization to comprise a distinct species, were characterized in terms of their physiologies. The bacteria were shown to be obligately chemolithotrophic, acidophilic and mesophilic, and grew in both oxic and anoxic environments, using ferrous iron, reduced sulfur or hydrogen as electron donors and oxygen or ferric iron as electron acceptors. Some of the strains grew at lower pH than those reported for the two recognized iron-oxidizing species, and . Tolerance of transition metals and aluminium, and also specific rates of iron oxidation and reduction, were more similar to those of (to which the strains are more closely related) than to . The name sp. nov. is proposed to accommodate the 12 strains, with the type strain being JCM 18981 ( = ATCC 33020).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049759-0
2013-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4018.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049759-0&mimeType=html&fmt=ahah

References

  1. Amouric A., Brochier-Armanet C., Johnson D. B., Bonnefoy V., Hallberg K. B.. ( 2011;). Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. . Microbiology 157:, 111–122. [CrossRef][PubMed]
    [Google Scholar]
  2. Bonnefoy V., Holmes D. S.. ( 2012;). Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. . Environ Microbiol 14:, 1597–1611. [CrossRef][PubMed]
    [Google Scholar]
  3. Drobner E., Huber H., Stetter K. O.. ( 1990;). Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. . Appl Environ Microbiol 56:, 2922–2923.[PubMed]
    [Google Scholar]
  4. Duquesne K., Lebrun S., Casiot C., Bruneel O., Personné J. C., Leblanc M., Elbaz-Poulichet F., Morin G., Bonnefoy V.. ( 2003;). Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. . Appl Environ Microbiol 69:, 6165–6173. [CrossRef][PubMed]
    [Google Scholar]
  5. Ghauri M. A., Okibe N., Johnson D. B.. ( 2007;). Attachment of acidophilic bacteria to solid surfaces: the significance of species and strain variations. . Hydrometallurgy 85:, 72–80. [CrossRef]
    [Google Scholar]
  6. Goebel B. M., Stackebrandt E.. ( 1994;). Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. . Appl Environ Microbiol 60:, 1614–1621.[PubMed]
    [Google Scholar]
  7. Hallberg K. B., Johnson D. B.. ( 2007;). Isolation, enumeration, growth, and preservation of acidophilic prokaryotes. . In Manual of Environmental Microbiology, , 3rd edn., pp. 1155–1165. Edited by Hurst C. J., Crawford R. L., Garland J. L., Lipson D. A., Mills A. L., Stetzenbach L. D... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  8. Hallberg K. B., Lindström E. B.. ( 1994;). Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. . Microbiology 140:, 3451–3456. [CrossRef][PubMed]
    [Google Scholar]
  9. Hallberg K. B., González-Toril E., Johnson D. B.. ( 2010;). Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. . Extremophiles 14:, 9–19. [CrossRef][PubMed]
    [Google Scholar]
  10. Hallberg K. B., Hedrich S., Johnson D. B.. ( 2011;). Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. . Extremophiles 15:, 271–279. [CrossRef][PubMed]
    [Google Scholar]
  11. Harrison A. P. Jr. ( 1982;). Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans. . Arch Microbiol 131:, 68–76. [CrossRef]
    [Google Scholar]
  12. Johnson D. B., Hallberg K. B.. ( 2007;). Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms. . In Biomining, pp. 237–261. Edited by Rawlings D. E., Johnson D. B... Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  13. Johnson D. B., Bacelar-Nicolau P., Okibe N., Thomas A., Hallberg K. B.. ( 2009;). Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. . Int J Syst Evol Microbiol 59:, 1082–1089. [CrossRef][PubMed]
    [Google Scholar]
  14. Johnson D. B., Kanao T., Hedrich S.. ( 2012;). Redox transformations of iron at extremely low pH: fundamental and applied aspects. . Front Microbiol 3:, 96. [CrossRef][PubMed]
    [Google Scholar]
  15. Karavaiko G. I., Turova T. P., Kondrat’eva T. F., Lysenko A. M., Kolganova T. V., Ageeva S. N., Muntyan L. N., Pivovarova T. A.. ( 2003;). Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. . Int J Syst Evol Microbiol 53:, 113–119. [CrossRef][PubMed]
    [Google Scholar]
  16. Katayama-Fujimura Y., Tsuzaki N., Kuraishi H.. ( 1982;). Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. . J Gen Microbiol 128:, 1599–1611.
    [Google Scholar]
  17. Kelly D. P., Wood A. P.. ( 2000;). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov.. Int J Syst Evol Microbiol 50:, 511–516. [CrossRef][PubMed]
    [Google Scholar]
  18. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  19. Leathen W. W., Bradley S. A.. ( 1954;). A new iron-oxidizing bacterium: Ferrobacillus ferrooxidans. . Bacteriol Proc 1954:, 44.
    [Google Scholar]
  20. Liljeqvist M., Valdes J., Holmes D. S., Dopson M.. ( 2011;). Draft genome of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3. . J Bacteriol 193:, 4304–4305. [CrossRef][PubMed]
    [Google Scholar]
  21. Mykytczuk N. C. S., Trevors J. T., Ferroni G. D., Leduc L. G.. ( 2010;). Cytoplasmic membrane fluidity and fatty acid composition of Acidithiobacillus ferrooxidans in response to pH stress. . Extremophiles 14:, 427–441. [CrossRef][PubMed]
    [Google Scholar]
  22. Ohmura N., Sasaki K., Matsumoto N., Saiki H.. ( 2002;). Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. . J Bacteriol 184:, 2081–2087. [CrossRef][PubMed]
    [Google Scholar]
  23. Okibe N., Gericke M., Hallberg K. B., Johnson D. B.. ( 2003;). Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. . Appl Environ Microbiol 69:, 1936–1943. [CrossRef][PubMed]
    [Google Scholar]
  24. Peng H., Yang Y., Li X., Qiu G., Liu X., Huang J., Hu Y.. ( 2006;). Structure analysis of 16S rDNA sequences from strains of Acidithiobacillus ferrooxidans. . J Biochem Mol Biol 39:, 178–182. [CrossRef][PubMed]
    [Google Scholar]
  25. Pronk J. T., de Bruyn J. C., Bos P., Kuenen J. G.. ( 1992;). Anaerobic growth of Thiobacillus ferrooxidans. . Appl Environ Microbiol 58:, 2227–2230.[PubMed]
    [Google Scholar]
  26. Roberto F. F., Bruhn D. F., Wilhite A. M., Ward T. E.. ( 1993;). Phylogenetic and biochemical characterization of acidophilic bacteria. . FEMS Microbiol Rev 11:, 31–35. [CrossRef]
    [Google Scholar]
  27. Selenska-Pobell S., Otto A., Kutschke S.. ( 1998;). Identification and discrimination of thiobacilli using ARDREA, RAPD and rep-APD. . J Appl Microbiol 84:, 1085–1091. [CrossRef]
    [Google Scholar]
  28. Tomizuka N., Yagisawa M. N., Someya J., Takahara Y.. ( 1976;). Continuous leaching of uranium by Thiobacillus ferrooxidans. . Agric Biol Chem 40:, 1019–1025. [CrossRef]
    [Google Scholar]
  29. Ueda T., Suga Y., Yahiro N., Matsuguchi T.. ( 1995;). Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. . J Bacteriol 177:, 1414–1417.[PubMed]
    [Google Scholar]
  30. Valdés J., Pedroso I., Quatrini R., Holmes D. S.. ( 2008;). Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxydans and A. caldus: insights into their metabolism and ecophysiology. . Hydrometallurgy 94:, 180–184. [CrossRef]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  32. Yahya A., Roberto F. F., Johnson D. B.. ( 1999;). Novel mineral-oxidising bacteria from Montserrat (W. I.): physiological and phylogenetic characteristics. . In Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, Process Metallurgy 9A, pp. 729–740. Edited by Amils R., Ballester A... Amsterdam:: Elsevier;.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049759-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049759-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error