sp. nov., isolated from seawater of the Pacific, and emended description of the genus Free

Abstract

A Gram-stain-negative, aerobic, catalase- and oxidase-positive, non-flagellated, rod-shaped bacterium, designated strain P-50-3, was isolated from seawater of the Pacific. The strain grew at 10–40 °C (optimum at 30 °C) and with 0–12 % (w/v, optimum 2 %) NaCl. It reduced nitrate to nitrite but did not hydrolyse gelatin, starch or Tween 80. Analysis of 16S rRNA gene sequences showed that strain P-50-3 clustered tightly with the genus and shared the highest 16S rRNA gene sequence similarity (94.3 %) with the type strain of . The major respiratory quinone was Q-10 and the major cellular fatty acids were Cω7, C, 11-methyl Cω7 and C. Polar lipids included phosphatidylglycerol (PG), phosphatidylcholine (PC), two unidentified aminolipids and an unidentified lipid. The genomic DNA G+C content of strain P-50-3 was 69.0 mol%. On the basis of the data obtained in this polyphasic study, strain P-50-3 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain of is P-50-3 ( = KACC 16527 = CGMCC 1.11030). An emended description of the genus Lim 2008 is also proposed.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41276149, 31025001, 31070061, 31170055, 81271896, 41106161, 31290231 and 41176130)
  • Hi-Tech Research and Development Program of China (Award 2012AA092103 and 2011AA090703)
  • Special Fund of China for Marine Scientific Research in the Public Interest (Award 201005032-6)
  • China Ocean Mineral Resources R & D Association (COMRA) Special Foundation (Award DY125-15-R-03 and DY125-15-T-05)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049742-0
2013-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3597.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049742-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997 ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25, 33893402. [View Article] [PubMed]
    [Google Scholar]
  2. Collins M. D., Jones D. ( 1980 ). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48, 459470. [View Article]
    [Google Scholar]
  3. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  4. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [View Article]
    [Google Scholar]
  5. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  6. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [View Article] [PubMed]
    [Google Scholar]
  7. Komagata K., Suzuki K. ( 1987 ). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19, 161207. [View Article]
    [Google Scholar]
  8. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  9. Lim J.-M., Jeon C. O., Jang H. H., Park D.-J., Shin Y. K., Yeo S.-H., Kim C.-J. ( 2008 ). Albimonas donghaensis gen. nov., sp. nov., a non-photosynthetic member of the class Alphaproteobacteria isolated from seawater. . Int J Syst Evol Microbiol 58, 282285. [View Article] [PubMed]
    [Google Scholar]
  10. Marmur J. ( 1961 ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3, 208218. [View Article]
    [Google Scholar]
  11. Marmur J., Doty P. ( 1962 ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5, 109118. [View Article] [PubMed]
    [Google Scholar]
  12. Murray R. G. E., Doetsch R. N., Robinow C. F. ( 1994 ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 2141. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  13. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  14. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  15. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049742-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049742-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed