1887

Abstract

A Gram-stain-negative, rod-shaped, orange-coloured, catalase- and oxidase-positive, non-motile bacterium, designated strain 92V, was isolated from the marine sponge , collected from Lough Hyne, County Cork, Ireland. 16S rRNA gene sequence analysis revealed that strain 92V clustered with members of the family , the closest member being NCIMB 1399, with a gene sequence similarity of 97.5 %. Strain 92V required seawater for growth with optimal growth occurring at 25 °C, at pH 6–7 and with 3 % (w/v) NaCl. MK-6 was the sole respiratory quinone present and the major fatty acids were iso-C 3-OH, iso-C, iso-Cω9 and iso-C 3-OH. The DNA G+C content was 36.1 mol%. Combined phenotypic differences and phylogenetic analysis indicate that strain 92V represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 92V ( = NCIMB 14723 = DSM 25232).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049650-0
2014-02-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/501.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049650-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Bernardet J.-F. . ( 2011; ). Family I. Flavobacteriaceae Reichenbach 1992. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 106–111. Edited by Krieg N. R. , Staley J. T. , Brown D. R. , Hedlund B. P. , Paster B. J. , Ward N. L. , Ludwig W. , Whitman W. B. . . New York:: Springer;.
    [Google Scholar]
  3. Bernardet J.-F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bligh E. G. , Dyer W. J. . ( 1959; ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen W. M. , Sheu F. S. , Sheu S. Y. . ( 2012; ). Aquimarina salinaria sp. nov., a novel algicidal bacterium isolated from a saltpan. . Arch Microbiol 194:, 103–112. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cowan S. , Steel K. . ( 1993; ). Manual for the Identification of Medical Bacteria, , 3rd edn.. London:: Cambridge University Press;.
    [Google Scholar]
  7. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Johnson J. L. , Chilton W. S. . ( 1966; ). Galactosamine glycan of Chondrococcus columnaris . . Science 152:, 1247–1248. [CrossRef] [PubMed]
    [Google Scholar]
  9. Lin B. , Lu G. , Zheng Y. , Xie W. , Li S. , Hu Z. . ( 2012; ). Aquimarina agarilytica sp. nov., an agarolytic species isolated from a red alga. . Int J Syst Evol Microbiol 62:, 869–873. [CrossRef] [PubMed]
    [Google Scholar]
  10. Margassery L. M. , Kennedy J. , O’Gara F. , Dobson A. D. , Morrissey J. P. . ( 2012; ). Diversity and antibacterial activity of bacteria isolated from the coastal marine sponges Amphilectus fucorum and Eurypon major . . Lett Appl Microbiol 55:, 2–8. [CrossRef] [PubMed]
    [Google Scholar]
  11. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  12. Miyazaki M. , Nagano Y. , Fujiwara Y. , Hatada Y. , Nogi Y. . ( 2010; ). Aquimarina macrocephali sp. nov., isolated from sediment adjacent to sperm whale carcasses. . Int J Syst Evol Microbiol 60:, 2298–2302. [CrossRef] [PubMed]
    [Google Scholar]
  13. Nedashkovskaya O. I. , Kim S. B. , Lysenko A. M. , Frolova G. M. , Mikhailov V. V. , Lee K. H. , Bae K. S. . ( 2005; ). Description of Aquimarina muelleri gen. nov., sp. nov., and proposal of the reclassification of [Cytophaga] latercula Lewin 1969 as Stanierella latercula gen. nov., comb. nov.. Int J Syst Evol Microbiol 55:, 225–229. [CrossRef] [PubMed]
    [Google Scholar]
  14. Nedashkovskaya O. I. , Vancanneyt M. , Christiaens L. , Kalinovskaya N. I. , Mikhailov V. V. , Swings J. . ( 2006; ). Aquimarina intermedia sp. nov., reclassification of Stanierella latercula (Lewin 1969) as Aquimarina latercula comb. nov. and Gaetbulimicrobium brevivitae Yoon et al. 2006 as Aquimarina brevivitae comb. nov. and emended description of the genus Aquimarina . . Int J Syst Evol Microbiol 56:, 2037–2041. [CrossRef] [PubMed]
    [Google Scholar]
  15. Norrell S. A. , Messley K. e. . ( 1997; ). Microbiology Laboratory Manual. Principles and Applications. Upper Saddle River, NJ:: Prentice-Hall;.
    [Google Scholar]
  16. Oh Y. S. , Kahng H. Y. , Lee Y. S. , Yoon B. J. , Lim S. B. , Jung J. S. , Oh D. C. , Lee D. H. . ( 2010; ). Aquimarina litoralis sp. nov., isolated from a coastal seawater. . J Microbiol 48:, 433–437. [CrossRef] [PubMed]
    [Google Scholar]
  17. Park S. C. , Choe H. N. , Baik K. S. , Seong C. N. . ( 2012; ). Aquimarina mytili sp. nov., isolated from the gut microflora of a mussel, Mytilus coruscus, and emended description of Aquimarina macrocephali . . Int J Syst Evol Microbiol 62:, 1974–1979. [CrossRef] [PubMed]
    [Google Scholar]
  18. Park S. C. , Choe H. N. , Baik K. S. , Seong C. N. . ( 2013; ). Aquimarina gracilis sp. nov., isolated from the gut microflora of a mussel, Mytilus coruscus, and emended description of Aquimarina spongiae . . Int J Syst Evol Microbiol 63:, 1782–1787. [CrossRef] [PubMed]
    [Google Scholar]
  19. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  21. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA-base composition by reversed-phase high-performance liquid-chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  22. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  23. Tindall B. J. . ( 1990a; ). A comparative-study of the lipid-composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  24. Tindall B. J. . ( 1990b; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  25. Tindall B. J. , Sikorski J. , Smibert R. M. , Kreig N. R. . ( 2007; ). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. , Schmidt T. M. , Snyder L. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Turner S. , Pryer K. M. , Miao V. P. W. , Palmer J. D. . ( 1999; ). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. . J Eukaryot Microbiol 46:, 327–338. [CrossRef] [PubMed]
    [Google Scholar]
  27. Visuvanathan S. , Moss M. T. , Stanford J. L. , Hermontaylor J. , McFadden J. J. . ( 1989; ). Simple enzymic method for isolation of DNA from diverse bacteria. . J Microbiol Methods 10:, 59–64. [CrossRef]
    [Google Scholar]
  28. Wang Q. , Garrity G. M. , Tiedje J. M. , Cole J. R. . ( 2007; ). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. . Appl Environ Microbiol 73:, 5261–5267. [CrossRef] [PubMed]
    [Google Scholar]
  29. Yi H. , Chun J. . ( 2011; ). Aquimarina addita sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61:, 2445–2449. [CrossRef] [PubMed]
    [Google Scholar]
  30. Yoon J. H. , Kang S. J. , Jung S. Y. , Oh H. W. , Oh T. K. . ( 2006; ). Gaetbulimicrobium brevivitae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a tidal flat of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 56:, 115–119. [CrossRef] [PubMed]
    [Google Scholar]
  31. Yoon B. J. , You H. S. , Lee D. H. , Oh D. C. . ( 2011; ). Aquimarina spongiae sp. nov., isolated from marine sponge Halichondria oshoro . . Int J Syst Evol Microbiol 61:, 417–421. [CrossRef] [PubMed]
    [Google Scholar]
  32. Yu T. , Yin Q. , Song X. , Zhao R. , Shi X. , Zhang X. H. . ( 2013; ). Aquimarina longa sp. nov., isolated from seawater, and emended description of Aquimarina muelleri . . Int J Syst Evol Microbiol 63:, 1235–1240. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049650-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049650-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error