1887

Abstract

A Gram-positive-staining, aerobic, endospore-forming bacterium, isolated as a contamination from an enrichment of enteric bacteria from surface water, was studied using a polyphasic taxonomic approach. 16S rRNA gene sequence similarity comparisons revealed that strain FSt3A was grouped in the genus , most closely related to XDB9 (98.1 %), BAM-582 and DSM 28 (both 98.0 %). The 16S rRNA gene sequence similarity to other species of the genus was <97.5 %. The allocation to the genus was supported by a detailed chemotaxonomic characterization revealing a cell wall containing alanine, glutamic acid, aspartic acid and the diagnostic diamino acid lysine in a molar ratio of 1.6 : 1 : 0.9 : 0.8 (peptidoglycan type A4α), the major menaquinones MK-7 and MK-6, and polar lipids consisting of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, four unknown phospholipids, one unknown aminophospholipid and one unidentified aminolipid. The major fatty acids were iso- and anteiso-branched fatty acids. DNA–DNA hybridizations with the type strains of the most closely related species, DSM 25242, DSM 23493 and DSM 28, in addition to the results of physiological and biochemical tests, allowed genotypic and phenotypic differentiation of strain FSt3A from these related species. Thus, FSt3A represents a novel species of the genus , for which the name sp. nov. is proposed, with FSt3A ( = CCM 8383 = DSM 25560 = CIP 110362) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049593-0
2013-09-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3148.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049593-0&mimeType=html&fmt=ahah

References

  1. Ahmed I., Yokota A., Yamazoe A., Fujiwara T.. ( 2007;). Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov.. Int J Syst Evol Microbiol 57:, 1117–1125. [CrossRef][PubMed]
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D.. ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. . Antonie van Leeuwenhoek 64:, 253–260. [CrossRef][PubMed]
    [Google Scholar]
  3. Bousfield I. J., Keddie R. M., Dando T. R., Shaw S.. ( 1985;). Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria. . In Chemical Methods in Bacterial Systematics, pp. 221–236. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  5. Christensen W. B.. ( 1946;). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. . J Bacteriol 52:, 461–466.[PubMed]
    [Google Scholar]
  6. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  7. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  8. Coorevits A., Dinsdale A. E., Heyrman J., Schumann P., Van Landschoot A., Logan N. A., De Vos P.. ( 2012;). Lysinibacillus macroides sp. nov., nom. rev. . Int J Syst Evol Microbiol 62:, 1121–1127. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Felsenstein J.. ( 2005;). phylip (phylogeny inference package) version 3.6. . Distributed by the author. Department of Genome Sciences, University of Washington;, Seattle, USA:.
  11. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  12. Glazunova O. O., Raoult D., Roux V.. ( 2006;). Bacillus massiliensis sp. nov., isolated from cerebrospinal fluid. . Int J Syst Evol Microbiol 56:, 1485–1488. [CrossRef][PubMed]
    [Google Scholar]
  13. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. ( 1996;). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef][PubMed]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  15. Jung M. Y., Kim J. S., Paek W. K., Styrak I., Park I. S., Sin Y., Paek J., Park K. A., Kim H.. & other authors ( 2012;). Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus. . Int J Syst Evol Microbiol 62:, 2347–2355. [CrossRef][PubMed]
    [Google Scholar]
  16. Kämpfer P.. ( 1990;). Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. . Zentralbl Bakteriol 273:, 164–172. [CrossRef][PubMed]
    [Google Scholar]
  17. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  18. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterisation of a fuel-oil conta-ated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  19. La Duc M. T., Satomi M., Venkateswaran K.. ( 2004;). Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. . Int J Syst Evol Microbiol 54:, 195–201. [CrossRef][PubMed]
    [Google Scholar]
  20. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  21. Lee C. S., Jung Y.-T., Park S., Oh T.-K., Yoon J.-H.. ( 2010;). Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. . Int J Syst Evol Microbiol 60:, 281–286. [CrossRef][PubMed]
    [Google Scholar]
  22. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  23. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  24. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  25. Miwa H., Ahmed I., Yokota A., Fujiwara T.. ( 2009;). Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. . Int J Syst Evol Microbiol 59:, 1427–1432. [CrossRef][PubMed]
    [Google Scholar]
  26. Moaledj K.. ( 1986;). Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. . J Microbiol Methods 5:, 303–310. [CrossRef]
    [Google Scholar]
  27. Pitcher D. G., Saunders N. A., Owen R. J.. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  28. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  29. Roessner U., Wagner C., Kopka J., Trethewey R. N., Willmitzer L.. ( 2000;). Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. . Plant J 23:, 131–142. [CrossRef][PubMed]
    [Google Scholar]
  30. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  31. Seiler H., Scherer S., Wenning M.. ( 2013;). Lysinibacillus meyeri sp. nov., isolated from a medical practice. . Int J Syst Evol Microbiol 63:, 1512–1518. [CrossRef][PubMed]
    [Google Scholar]
  32. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  34. Yang L.-L., Huang Y., Liu J., Ma L., Mo M.-H., Li W.-J., Yang F.-X.. ( 2012;). Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. . Antonie van Leeuwenhoek 102:, 53–59. [CrossRef][PubMed]
    [Google Scholar]
  35. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  36. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049593-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049593-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error