1887

Abstract

A taxonomic study was conducted on strain EM106, isolated from a sediment sample of the East Sea, Republic of Korea. Comparative 16S rRNA gene sequence analyses showed that strain EM106 belongs to the family and is most closely related to KMM 6211 and KMM 6390 (97.8 and 97.3 % 16S rRNA gene sequence similarities, respectively). The G+C content of the genomic DNA of strain EM106 was 33.3 mol%, and the major respiratory quinone was menaquinone-6. The polar lipids of EM106 were phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids. DNA–DNA relatedness data indicated that strain EM106 represented a distinct species, separate from KMM 6211 and KMM 6390. Strain EM106 possessed iso-C, iso-C G and iso-C 3-OH as the major cellular fatty acids. The isolate was Gram-staining-negative, strictly aerobic, short rod-shaped and motile by gliding. The strain grew at 10–35 °C (optimum, 25 °C), pH 6.5–9.0 (optimum, 7.5), and with 0.5–5 % (w/v) NaCl (optimum, 0.5–1 % NaCl). The overall physiological features of strain EM106 were very similar to those of KMM 6211 but only strain EM106 had nitrate reductase activity. On the basis of phenotypic and phylogenetic analyses, strain EM106 is proposed to represent a novel species, . The type strain is EM106( = KCTC 23858 = NCAIM B 02481).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049502-0
2013-08-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/3062.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049502-0&mimeType=html&fmt=ahah

References

  1. Begum Z., Srinivas T. N. R., Manasa P., Sailaja B., Sunil B., Prasad S., Shivaji S.. ( 2013;). Winogradskyella psychrotolerans sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from Arctic sediment. . Int J Syst Evol Microbiol 63:, 1646–1652. [CrossRef]
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y.. ( 2006;). An introduction to the family Flavobacteriaceae. . In The Prokaryotes. A Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 455–480. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  3. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  4. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Fautz E., Reichenbach H.. ( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8:, 87–91. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  9. Green A. A.. ( 1933;). The preparation of acetate and phosphate buffer solutions of known pH and ionic strength. . J Am Chem Soc 55:, 2331–2336. [CrossRef]
    [Google Scholar]
  10. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  11. Hiraishi A., Ueda Y., Ishihara J., Mori T.. ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42:, 457–469. [CrossRef]
    [Google Scholar]
  12. Ivanova E. P., Christen R., Gorshkova N. M., Zhukova N. V., Kurilenko V. V., Crawford R. J., Mikhailov V. V.. ( 2010;). Winogradskyella exilis sp. nov., isolated from the starfish Stellaster equestris, and emended description of the genus Winogradskyella. . Int J Syst Evol Microbiol 60:, 1577–1580. [CrossRef][PubMed]
    [Google Scholar]
  13. Kang C. H., Lee S. Y., Yoon J. H.. ( 2013;). Winogradskyella litorisediminis sp. nov., isolated from coastal sediment. . Int J Syst Evol Microbiol 63:, 1793–1799. [CrossRef][PubMed]
    [Google Scholar]
  14. Kidd K. K., Sgaramella-Zonta L. A.. ( 1971;). Phylogenetic analysis: concepts and methods. . Am J Hum Genet 23:, 235–252.[PubMed]
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Yi H., Won S., Chun J.. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim S. B., Nedashkovskaya O. I.. ( 2010;). Winogradskyella pacifica sp. nov., a marine bacterium of the family Flavobacteriaceae. . Int J Syst Evol Microbiol 60:, 1948–1951. [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University;. [CrossRef]
    [Google Scholar]
  18. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  19. Lau S. C. K., Tsoi M. M. Y., Li X., Plakhotnikova I., Dobretsov S., Lau K. W. K., Wu M., Wong P. K., Pawlik J. R., Qian P. Y.. ( 2005;). Winogradskyella poriferorum sp. nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. . Int J Syst Evol Microbiol 55:, 1589–1592. [CrossRef][PubMed]
    [Google Scholar]
  20. Lee S. Y., Park S., Oh T. K., Yoon J. H.. ( 2012;). Winogradskyella aquimaris sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 62:, 1814–1818. [CrossRef][PubMed]
    [Google Scholar]
  21. Lee D. H., Cho S. J., Kim M. S., Lee S. B.. ( 2013;). Winogradskyella damuponensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 63:, 321–326. [CrossRef][PubMed]
    [Google Scholar]
  22. Levring T.. ( 1946;). Some culture experiments with Ulva and artificial seawater. . Kungl Fysiografiska Sällsk Lund Förhandlingar 16:, 45–56.
    [Google Scholar]
  23. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  24. Nedashkovskaya O. I., Kim S. B., Han S. K., Snauwaert C., Vancanneyt M., Swings J., Kim K. O., Lysenko A. M., Rohde M.. & other authors ( 2005;). Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae. . Int J Syst Evol Microbiol 55:, 49–55. [CrossRef][PubMed]
    [Google Scholar]
  25. Nedashkovskaya O. I., Kim S. B., Vancanneyt M., Snauwaert C., Lysenko A. M., Rohde M., Frolova G. M., Zhukova N. V., Mikhailov V. V.. & other authors ( 2006;). Formosa agariphila sp. nov., a budding bacterium of the family Flavobacteriaceae isolated from marine environments, and emended description of the genus Formosa. . Int J Syst Evol Microbiol 56:, 161–167. [CrossRef][PubMed]
    [Google Scholar]
  26. Nedashkovskaya O. I., Vancanneyt M., Kim S. B., Zhukova N. V.. ( 2009;). Winogradskyella echinorum sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. . Int J Syst Evol Microbiol 59:, 1465–1468. [CrossRef][PubMed]
    [Google Scholar]
  27. Nedashkovskaya O. I., Kukhlevskiy A. D., Zhukova N. V.. ( 2012;). Winogradskyella ulvae sp. nov., an epiphyte of a Pacific seaweed, and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia. . Int J Syst Evol Microbiol 62:, 1450–1456. [CrossRef][PubMed]
    [Google Scholar]
  28. Pinhassi J., Nedashkovskaya O. I., Hagström A., Vancanneyt M.. ( 2009;). Winogradskyella rapida sp. nov., isolated from protein-enriched seawater. . Int J Syst Evol Microbiol 59:, 2180–2184. [CrossRef][PubMed]
    [Google Scholar]
  29. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  30. Romanenko L. A., Tanaka N., Frolova G. M., Mikhailov V. V.. ( 2009;). Winogradskyella arenosi sp. nov., a member of the family Flavobacteriaceae isolated from marine sediments from the Sea of Japan. . Int J Syst Evol Microbiol 59:, 1443–1446. [CrossRef][PubMed]
    [Google Scholar]
  31. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  33. Tittsler R. P., Sandholzer L. A.. ( 1936;). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  34. Torreblanca M., Rodriguez-Valera F., Juez G., Ventosa A., Kamekura M., Kates M.. ( 1986;). Classification of nonalkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov.. Syst Appl Microbiol 8:, 89–99. [CrossRef]
    [Google Scholar]
  35. Wayne R. K., Nash W. G., O’Brien S. J.. ( 1987;). Chromosomal evolution of the Canidae. II. Divergence from the primitive carnivore karyotype. . Cytogenet Cell Genet 44:, 134–141. [CrossRef][PubMed]
    [Google Scholar]
  36. Yoon B. J., Byun H. D., Kim J. Y., Lee D. H., Kahng H. Y., Oh D. C.. ( 2011;). Winogradskyella lutea sp. nov., isolated from seawater, and emended description of the genus Winogradskyella. . Int J Syst Evol Microbiol 61:, 1539–1543. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049502-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049502-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error