1887

Abstract

A yellow, rod-shaped, Gram-negative, facultatively aerobic, gliding bacterium, designed strain P7-3-5, was isolated from intertidal sand of the Yellow Sea, China. Analysis of 16S rRNA gene sequences revealed that strain P7-3-5 formed a distinct lineage within the family , sharing 94.2–96.9 % sequence similarity with type strains of species of the most closely related genera, including , , and . The strain grew at 4–40 °C and with 0.5–5.0 % (w/v) NaCl. It reduced nitrate to nitrite and hydrolysed gelatin and DNA. The major cellular fatty acids were iso-C, iso-C G and anteiso-C and the major respiratory quinone was MK-6. Polar lipids included phosphatidylethanolamine (PE), three unidentified aminolipids (AL1–3) and four unidentified lipids (L1–4). The genomic DNA G+C content of strain P7-3-5 was 32.1 mol%. Data from this polyphasic study suggest that strain P7-3-5 represents a novel species in a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is P7-3-5 ( = CGMCC 1.12213 = KACC 16457).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049304-0
2013-08-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/2853.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049304-0&mimeType=html&fmt=ahah

References

  1. Abell G. C. J., Bowman J. P.. ( 2005;). Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. . FEMS Microbiol Ecol 51:, 265–277. [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardet J.-F.. ( 2011;). Family I. Flavobacteriaceae Reichenbach 1992. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 106–111. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  4. Bernardet J.-F., Nakagawa Y.. ( 2006;). An introduction to the family Flavobacteriaceae. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 455–480. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  5. Bernardet J.-F, Nakagawa Y., Holmes B.. ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  6. Bowman J. P.. ( 2006;). The marine clade of the family Flavobacteriaceae: the genera Aequorivita, Arenibacter, Cellulophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Mesonia, Muricauda, Polaribacter, Psychroflexus, Psychroserpens, Robiginitalea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter and Zobellia. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 677–694. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  7. Bowman J. P., Nichols D. S.. ( 2005;). Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. . Int J Syst Evol Microbiol 55:, 1471–1486. [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  9. Cottrell M. T., Kirchman D. L.. ( 2000;). Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. . Appl Environ Microbiol 66:, 1692–1697. [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  13. Jooste P. J.. ( 1985;). The taxonomy and significance of Flavobacterium–Cytophaga strains from daily sources. . PhD thesis, University of the Orange Free State;, Bloemfontein, South Africa:.
  14. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  16. Kirchman D. L.. ( 2002;). The ecology of Cytophaga-Flavobacteria in aquatic environments. . FEMS Microbiol Ecol 39:, 91–100.[PubMed]
    [Google Scholar]
  17. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  18. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  19. Lee D.-H., Kahng H.-Y., Lee Y. S., Jung J. S., Kim J. M., Chung B. S., Park S. K., Jeon C. O.. ( 2009;). Jejuia pallidilutea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from seawater. . Int J Syst Evol Microbiol 59:, 2148–2152. [CrossRef][PubMed]
    [Google Scholar]
  20. Ludwig W., Euzeby J., Whitman W. B.. ( 2011;). Road map of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 1–20. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  21. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  22. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  23. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Nedashkovskaya O. I., Vancanneyt M., Kim S. B., Hoste B., Bae K. S.. ( 2007;). Algibacter mikhailovii sp. nov., a novel marine bacterium of the family Flavobacteriaceae, and emended description of the genus Algibacter. . Int J Syst Evol Microbiol 57:, 2147–2150. [CrossRef][PubMed]
    [Google Scholar]
  25. Park S. C., Choe H. N., Hwang Y. M., Baik K. S., Kim S. N., Lee Y. S., Jung J. S., Seong C. N.. ( 2013a;). Marinivirga aestuarii gen. nov., sp. nov., a member of the family Flavobacteriaceae, isolated from marine environments, and emended descriptions of the genera Hyunsoonleella, Jejuia and Pontirhabdus and the species Hyunsoonleella jejuensis, Jejuia pallidilutea and Pontirhabdus pectinivorans. . Int J Syst Evol Microbiol 63:, 1524–1531. [CrossRef][PubMed]
    [Google Scholar]
  26. Park S. C., Hwang Y. M., Choe H. N., Baik K. S., Kim H., Seong C. N.. ( 2013b;). Algibacter aquimarinus sp. nov., isolated from a marine environment, and reclassification of Pontirhabdus pectinivorans as Algibacter pectinivorans comb. nov.. Int J Syst Evol Microbiol 63:, 2038–2042. [CrossRef][PubMed]
    [Google Scholar]
  27. Qin Q.-L., Zhang X.-Y., Wang X.-M., Liu G.-M., Chen X.-L., Xie B.-B., Dang H.-Y., Zhou B.-C., Yu J., Zhang Y.-Z.. ( 2010;). The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. . BMC Genomics 11:, 247. [CrossRef][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Yi H., Cho J.-C., Chun J.. ( 2011;). Pontirhabdus pectinivorans gen. nov., sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61:, 2475–2481. [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon B.-J., Lee D.-H., Kang B.-J., Kahng H.-Y., Oh Y.-S., Sohn J.-H., Choi E.-S., Oh D.-C.. ( 2010;). Hyunsoonleella jejuensis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from seawater. . Int J Syst Evol Microbiol 60:, 382–386. [CrossRef][PubMed]
    [Google Scholar]
  33. Zhang Z., Schwartz S., Wagner L., Miller W.. ( 2000;). A greedy algorithm for aligning DNA sequences. . J Comput Biol 7:, 203–214. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049304-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049304-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error