1887

Abstract

was described from soybean root-nodule bacterial isolates. Since its description, several studies have revealed heterogeneities among rhizobia assigned to this species. Strains assigned to group Ia have been isolated in several countries, and many of them are outstanding soybean symbionts used in inoculants worldwide, but they have also been isolated from other legume hosts. Here, we summarize published studies that indicate that group Ia strains are different from the type strain USDA 6 and closely related strains, and present new morphophysiological, genotypic and genomic evidence to support their reclassification into a novel species, for which the name sp. nov. is proposed. The type strain of the novel species is the well-studied strain USDA 110 ( = IAM 13628  = CCRC 13528  = NRRL B-4361  = NRRL B-4450  = TAL 102  = BCRC 13528  = JCM 10833  = TISTR 339  = SEMIA 5032  = 3I1B110  = ACCC 15034  = CCT 4249  = NBRC 14792  = R-12974  = CNPSo 46).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049130-0
2013-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3342.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049130-0&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H. P., Göker M.. ( 2010;). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2:, 117–134. [CrossRef][PubMed]
    [Google Scholar]
  2. Bergersen F. J.. ( 1980;). Methods for Evaluating Biological Nitrogen Fixation. Chichester:: Wiley;.
    [Google Scholar]
  3. Boddey L. H., Hungria M.. ( 1997;). Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean. . Biol Fertil Soils 25:, 407–415. [CrossRef]
    [Google Scholar]
  4. Chahboune R., Carro L., Peix A., Barrijal S., Velázquez E., Bedmar E. J.. ( 2011;). Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus. . Int J Syst Evol Microbiol 61:, 2922–2927. [CrossRef][PubMed]
    [Google Scholar]
  5. Chahboune R., Carro L., Peix A., Ramírez-Bahena M. H., Barrijal S., Velázquez E., Bedmar E. J.. ( 2012;). Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. . Syst Appl Microbiol 35:, 302–305. [CrossRef][PubMed]
    [Google Scholar]
  6. Chang Y. L., Wang J. Y., Wang E. T., Liu H. C., Sui X. H., Chen W. X.. ( 2011;). Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. . Int J Syst Evol Microbiol 61:, 2496–2502. [CrossRef][PubMed]
    [Google Scholar]
  7. Chueire L. M. O., Bangel E. V., Mostasso F. L., Campo R. J., Pedrosa F. O., Hungria M.. ( 2003;). Classificação taxonômica das estirpes de rizóbio recomendadas para as culturas da soja e do feijoeiro baseada no seqüenciamento do gene 16S rRNA. . Rev Bras Cienc Solo 27:, 833–840 (in Portuguese). [CrossRef]
    [Google Scholar]
  8. Delamuta J. R. M., Ribeiro R. A., Menna P., Bangel E. V., Hungria M.. ( 2012;). Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria. . Braz J Microbiol 43:, 698–710. [CrossRef]
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  10. Ferreira M. C., Hungria M.. ( 2002;). Recovery of soybean inoculant strains from uncropped soils in Brazil. . Field Crops Res 79:, 139–152. [CrossRef]
    [Google Scholar]
  11. Fred E. B., Baldwin I. L., McCoy E.. ( 1932;). Root Nodule Bacteria of Leguminous Plants. Madison, WI:: University of Wisconsin Press;.
    [Google Scholar]
  12. Germano M. G., Menna P., Mostasso F. L., Hungria M.. ( 2006;). RFLP analysis of the rRNA operon of a Brazilian collection of bradyrhizobial strains from 33 legume species. . Int J Syst Evol Microbiol 56:, 217–229. [CrossRef][PubMed]
    [Google Scholar]
  13. Graham P. H., Sadowsky M. J., Tighe S. W., Thompson J. A., Date R. A., Howieson J. G., Thomas R.. ( 1995;). Differences among strains of Bradyrhizobium in fatty-acid methyl-ester analysis. . Can J Microbiol 41:, 1038–1042. [CrossRef]
    [Google Scholar]
  14. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  15. Hollis A. B., Kloos W. E., Elkan G. H.. ( 1981;). DNA : DNA hybridization studies of Rhizobium japonicum and related Rhizobiaceae. . J Gen Microbiol 123:, 215–222.
    [Google Scholar]
  16. Huber T. A., Agarwal A. K., Keister D. L.. ( 1984;). Extracellular polysaccharide composition, ex planta nitrogenase activity, and DNA homology in Rhizobium japonicum. . J Bacteriol 158:, 1168–1171.[PubMed]
    [Google Scholar]
  17. Hungria M., Chueire L. M. O., Coca R. G., Megías M.. ( 2001;). Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. . Soil Biol Biochem 33:, 1349–1361. [CrossRef]
    [Google Scholar]
  18. Hungria M., Campo R. J., Mendes I. C., Graham P. H.. ( 2006;). Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (Glycine max L. Merr.) in South America. . In Nitrogen Nutrition and Sustainable Plant Productivity, pp. 43–93. Edited by Singh R. P., Shankar N., Jaiwal P. K... Houston:: Studium Press;.
    [Google Scholar]
  19. Islam M. S., Kawasaki H., Muramatsu Y., Nakagawa Y., Seki T.. ( 2008;). Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. . Biosci Biotechnol Biochem 72:, 1416–1429. [CrossRef][PubMed]
    [Google Scholar]
  20. Jordan D. C.. ( 1982;). Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. . Int J Syst Bacteriol 32:, 136–139. [CrossRef]
    [Google Scholar]
  21. Kaneko T., Nakamura Y., Sato S., Minamisawa K., Uchiumi T., Sasamoto S., Watanabe A., Idesawa K., Iriguchi M.. & other authors ( 2002;). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. . DNA Res 9:, 189–197. [CrossRef][PubMed]
    [Google Scholar]
  22. Kaneko T., Maita H., Hirakawa H., Uchiike N., Minamisawa K., Watanabe A., Sato S.. ( 2011;). Complete genome sequence of the soybean symbiont Bradyrhizobium japonicum strain USDA6T. . Genes 2:, 763–787. [CrossRef]
    [Google Scholar]
  23. Kaschuk G., Hungria M., Andrade D. S., Campo R. J.. ( 2006;). Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. . Appl Soil Ecol 32:, 210–220. [CrossRef]
    [Google Scholar]
  24. Konstantinidis K. T., Tiedje J. M.. ( 2004;). Trends between gene content and genome size in prokaryotic species with larger genomes. . Proc Natl Acad Sci U S A 101:, 3160–3165. [CrossRef][PubMed]
    [Google Scholar]
  25. Koppell J. H., Parker M. A.. ( 2012;). Phylogenetic clustering of Bradyrhizobium symbionts on legumes indigenous to North America. . Microbiology 158:, 2050–2059. [CrossRef][PubMed]
    [Google Scholar]
  26. Kuykendall L. D., Saxena B., Devine T. E., Udell S. E.. ( 1992;). Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov.. Can J Microbiol 38:, 501–505. [CrossRef]
    [Google Scholar]
  27. Lloret L., Martínez-Romero E.. ( 2005;). Evolución y filogenia de rhizobia. . Rev Latinoam Microbiol 47:, 43–60 (in Spanish).[PubMed]
    [Google Scholar]
  28. Löhnis F., Hansen R.. ( 1921;). Nodule bacteria of leguminous plants. . J Agric Res 20:, 543–556.
    [Google Scholar]
  29. Mendes I. C., Hungria M., Vargas M. A. T.. ( 2004;). Establishment of Bradyrhizobium japonicum and B. elkanii strains in a Brazilian Cerrado oxisol. . Biol Fertil Soils 40:, 28–35. [CrossRef]
    [Google Scholar]
  30. Menna P., Hungria M.. ( 2011;). Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. . Int J Syst Evol Microbiol 61:, 3052–3067. [CrossRef][PubMed]
    [Google Scholar]
  31. Menna P., Hungria M., Barcellos F. G., Bangel E. V., Hess P. N., Martínez-Romero E.. ( 2006;). Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. . Syst Appl Microbiol 29:, 315–332. [CrossRef][PubMed]
    [Google Scholar]
  32. Menna P., Barcellos F. G., Hungria M.. ( 2009;). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. . Int J Syst Evol Microbiol 59:, 2934–2950. [CrossRef][PubMed]
    [Google Scholar]
  33. MIDI ( 2001;). Sherlock Microbial Identification System Operating Manual, version 4.0. Newark:: MIDI, Inc;.
    [Google Scholar]
  34. Minamisawa K.. ( 1989;). Comparison of extracellular polysaccharide composition, rhizobitoxine production, and hydrogenase phenotype among various strains of Bradyrhizobium japonicum. . Plant Cell Physiol 30:, 877–884.
    [Google Scholar]
  35. Minamisawa K.. ( 1990;). Division of rhizobitoxine-producing and hydrogen-uptake positive strains of Bradyrhizobium japonicum by nifDKE sequence divergence. . Plant Cell Physiol 31:, 81–89.
    [Google Scholar]
  36. Minamisawa K., Isawa T., Nakatsuka Y., Ichikawa N.. ( 1998;). New Bradyrhizobium japonicum strains that possess high copy numbers of the repeated sequence RS alpha. . Appl Environ Microbiol 64:, 1845–1851.[PubMed]
    [Google Scholar]
  37. Moulin L., Béna G., Boivin-Masson C., Stepkowski T.. ( 2004;). Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. . Mol Phylogenet Evol 30:, 720–732. [CrossRef][PubMed]
    [Google Scholar]
  38. Norris D. O.. ( 1965;). Acid production by Rhizobium a unifying concept. . Plant Soil 22:, 143–166. [CrossRef]
    [Google Scholar]
  39. Ormeño-Orrillo E., Hungria M., Martínez-Romero E.. ( 2013;). Dinitrogen-fixing prokaryotes. . In The Prokaryotes, , 4th edn., pp. 427–451. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E... Berlin & Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  40. Parker M. A., Lafay B., Burdon J. J., van Berkum P.. ( 2002;). Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobium. . Microbiology 148:, 2557–2565.[PubMed]
    [Google Scholar]
  41. Provorov N. A., Vorob’ev N. I.. ( 2000;). Evolutionary genetics of nodule bacteria: molecular and population aspects. . Russ J Genet 36:, 1323–1335. [CrossRef]
    [Google Scholar]
  42. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  43. Rivas R., Willems A., Palomo J. L., García-Benavides P., Mateos P. F., Martínez-Molina E., Gillis M., Velázquez E.. ( 2004;). Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. . Int J Syst Evol Microbiol 54:, 1271–1275. [CrossRef][PubMed]
    [Google Scholar]
  44. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  45. Santos M. A., Vargas M. A. T., Hungria M.. ( 1999;). Characterization of soybean Bradyrhizobium strains adapted to the Brazilian savannas. . FEMS Microbiol Ecol 30:, 261–272. [CrossRef][PubMed]
    [Google Scholar]
  46. So R. B., Ladha J. K., Young J. P.. ( 1994;). Photosynthetic symbionts of Aeschynomene spp. form a cluster with bradyrhizobia on the basis of fatty acid and rRNA analyses. . Int J Syst Bacteriol 44:, 392–403. [CrossRef][PubMed]
    [Google Scholar]
  47. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  48. Stepkowski T., Moulin L., Krzyzańska A., McInnes A., Law I. J., Howieson J.. ( 2005;). European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. . Appl Environ Microbiol 71:, 7041–7052. [CrossRef][PubMed]
    [Google Scholar]
  49. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  50. Tian C. F., Zhou Y. J., Zhang Y. M., Li Q. Q., Zhang Y. Z., Li D. F., Wang S., Wang J., Gilbert L. B.. & other authors ( 2012;). Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. . Proc Natl Acad Sci U S A 109:, 8629–8634. [CrossRef][PubMed]
    [Google Scholar]
  51. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef][PubMed]
    [Google Scholar]
  52. Urtz B. E., Elkan G. H.. ( 1996;). Genetic diversity among Bradyrhizobium isolates that effectively nodulate peanut (Arachis hypogaea). . Can J Microbiol 42:, 1121–1130. [CrossRef][PubMed]
    [Google Scholar]
  53. van Berkum P., Fuhrmann J. J.. ( 2000;). Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. . Int J Syst Evol Microbiol 50:, 2165–2172. [CrossRef][PubMed]
    [Google Scholar]
  54. van Berkum P., Fuhrmann J. J.. ( 2001;). Characterization of soybean bradyrhizobia for which serogroup affinities have not been identified. . Can J Microbiol 47:, 519–525. [CrossRef][PubMed]
    [Google Scholar]
  55. Vinuesa P., Rademaker J. L., de Bruijn F. J., Werner D.. ( 1998;). Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. . Appl Environ Microbiol 64:, 2096–2104.[PubMed]
    [Google Scholar]
  56. Vinuesa P., León-Barrios M., Silva C., Willems A., Jarabo-Lorenzo A., Pérez-Galdona R., Werner D., Martínez-Romero E.. ( 2005;). Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. . Int J Syst Evol Microbiol 55:, 569–575. [CrossRef][PubMed]
    [Google Scholar]
  57. Vinuesa P., Rojas-Jiménez K., Contreras-Moreira B., Mahna S. K., Prasad B. N., Moe H., Selvaraju S. B., Thierfelder H., Werner D.. ( 2008;). Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent. . Appl Environ Microbiol 74:, 6987–6996. [CrossRef][PubMed]
    [Google Scholar]
  58. Willems A., Coopman R., Gillis M.. ( 2001a;). Comparison of sequence analysis of 16S–23S rDNA spacer regions, AFLP analysis and DNA–DNA hybridizations in Bradyrhizobium. . Int J Syst Evol Microbiol 51:, 623–632.[PubMed]
    [Google Scholar]
  59. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M.. ( 2001b;). DNA–DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol 51:, 1315–1322.[PubMed]
    [Google Scholar]
  60. Willems A., Munive A., de Lajudie P., Gillis M.. ( 2003;). In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. . Syst Appl Microbiol 26:, 203–210. [CrossRef][PubMed]
    [Google Scholar]
  61. Woese C. R.. ( 1987;). Bacterial evolution. . Microbiol Rev 51:, 221–271.[PubMed]
    [Google Scholar]
  62. Xu L. M., Ge C., Cui Z., Li J., Fan H.. ( 1995;). Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. . Int J Syst Bacteriol 45:, 706–711. [CrossRef][PubMed]
    [Google Scholar]
  63. Yao Z. Y., Kan F. L., Wang E. T., Wei G. H., Chen W. X.. ( 2002;). Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov.. Int J Syst Evol Microbiol 52:, 2219–2230. [CrossRef][PubMed]
    [Google Scholar]
  64. Yokoyama T., Ando S., Tsuchiya K.. ( 1999;). Serological properties and intrinsic antibiotic resistance of soybean bradyrhizobia isolated from Thailand. . Soil Sci Plant Nutr 45:, 505–515. [CrossRef]
    [Google Scholar]
  65. Zhang Y. M., Li Y. Jr, Chen W. F., Wang E. T., Sui X. H., Li Q. Q., Zhang Y. Z., Zhou Y. G., Chen W. X.. ( 2012;). Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. . Int J Syst Evol Microbiol 62:, 1951–1957. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049130-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049130-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error