1887

Abstract

Two novel thermophilic bacteria, designated SgZ-9 and SgZ-10, were isolated from compost. Cells of the two strains were catalase-positive, endospore-forming and Gram-staining-positive rods. Strain SgZ-9 was oxidase-positive and non-motile, and strain SgZ-10 was oxidase-negative and motile. The highest 16S rRNA gene sequence similarity for both strains SgZ-9 and SgZ-10 was observed with (97.5 % and 96.9 %, respectively). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SgZ-9 formed a cluster with R-6514 and R-7190, and SgZ-10 formed a cluster with R-6540. The DNA–DNA pairing studies showed that SgZ-9 displayed 41.6 % and 30.7 % relatedness to the type strains of and , respectively. The 16S rRNA gene sequence similarity between strains SgZ-9 and SgZ-10 was 97.2 %, and the level of DNA–DNA relatedness between them was 39.2 %. The DNA G+C content of SgZ-9 and SgZ-10 was 45.3 and 47.9 mol%, respectively. Chemotaxonomic analysis revealed that both strains contained the menaquinone 7 (MK-7) as the predominant respiratory quinone. The major cellular fatty acids (>5 %) were iso-C, anteiso-C, anteiso-C, iso-C and iso-C in SgZ-9 and iso-C, anteiso-C, iso-C, anteiso-C and iso-C in SgZ-10. Based on the phenotypic characteristics, chemotaxonomic features, DNA–DNA hybridization with the nearest phylogenetic neighbours and phylogenetic analysis based on the 16S rRNA gene sequences, the two strains were determined to be two distinct novel species in the genus , and the names proposed are sp. nov. SgZ-9 ( = CCTCC AB2012109 = KACC 16872) and sp. nov. SgZ-10 (CCTCC AB2012110 = KACC 16873).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049106-0
2013-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/3030.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049106-0&mimeType=html&fmt=ahah

References

  1. Bagheri M., Didari M., Amoozegar M. A., Schumann P., Sánchez-Porro C., Mehrshad M., Ventosa A.. ( 2012;). Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake. . Int J Syst Evol Microbiol 62:, 811–816. [CrossRef][PubMed]
    [Google Scholar]
  2. Boone D. R., Liu Y., Zhao Z. J., Balkwill D. L., Drake G. R., Stevens T. O., Aldrich H. C.. ( 1995;). Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. . Int J Syst Bacteriol 45:, 441–448. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  4. Demharter W., Hensel R.. ( 1989;). Bacillus thermocloaceae sp. nov., a new thermophilic species from sewage sludge. . Syst Appl Microbiol 11:, 272–276. [CrossRef]
    [Google Scholar]
  5. Doetsch R. N.. ( 1981;). Determinative methods of light microscopy. . In Mannual of Methods for General Bacteriology, pp. 21–33. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Philips G. B... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Heyrman J., Rodríguez-Díaz M., Devos J., Felske A., Logan N. A., De Vos P.. ( 2005;). Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. . Int J Syst Evol Microbiol 55:, 111–117. [CrossRef][PubMed]
    [Google Scholar]
  9. Kämpfer P.. ( 1994;). Limits and possibilities of total fatty acid analysis for classification and identification of Bacillis species. . Syst Appl Microbiol 17:, 86–98. [CrossRef]
    [Google Scholar]
  10. Kanso S., Greene A. C., Patel B. K. C.. ( 2002;). Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. . Int J Syst Evol Microbiol 52:, 869–874. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Lonergan D. J., Jenter H. L., Coates J. D., Phillips E. J. P., Schmidt T. M., Lovley D. R.. ( 1996;). Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. . J Bacteriol 178:, 2402–2408.[PubMed]
    [Google Scholar]
  13. Lovley D. R., Holmes D. E., Nevin K. P.. ( 2004;). Dissimilatory Fe(III) and Mn(IV) reduction. . Adv Microb Physiol 49:, 219–286. [CrossRef][PubMed]
    [Google Scholar]
  14. Ma C., Zhuang L., Zhou S. G., Yang G. Q., Yuan Y., Xu R. X.. ( 2012;). Alkaline extracellular reduction: isolation and characterization of an alkaliphilic and halotolerant bacterium, Bacillus pseudofirmus MC02. . J Appl Microbiol 112:, 883–891. [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  16. Reysenbach A. L., Wickham G. S., Pace N. R.. ( 1994;). Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. . Appl Environ Microbiol 60:, 2113–2119.[PubMed]
    [Google Scholar]
  17. Rzhetsky A., Nei M.. ( 1993;). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10:, 1073–1095.[PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  20. Scheldeman P., Rodríguez-Díaz M., Goris J., Pil A., De Clerck E., Herman L., De Vos P., Logan N. A., Heyndrickx M.. ( 2004;). Bacillus farraginis sp. nov., Bacillus fortis sp. nov. and Bacillus fordii sp. nov., isolated at dairy farms. . Int J Syst Evol Microbiol 54:, 1355–1364. [CrossRef][PubMed]
    [Google Scholar]
  21. Slobodkin A., Reysenbach A. L., Strutz N., Dreier M., Wiegel J.. ( 1997;). Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. . Int J Syst Bacteriol 47:, 541–547. [CrossRef][PubMed]
    [Google Scholar]
  22. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  24. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetic analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  25. Taylor K. G., Konhauser K. O.. ( 2011;). Iron in earth surface systems: a major player in chemical and biological processes. . Elements 7:, 83–88. [CrossRef]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  27. Vaishampayan P., Probst A., Krishnamurthi S., Ghosh S., Osman S., McDowall A., Ruckmani A., Mayilraj S., Venkateswaran K.. ( 2010;). Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. . Int J Syst Evol Microbiol 60:, 1031–1037. [CrossRef][PubMed]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  29. Wu C. Y., Zhuang L., Zhou S. G., Li F. B., Li X. M.. ( 2010;). Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. . FEMS Microbiol Ecol 71:, 106–113. [CrossRef][PubMed]
    [Google Scholar]
  30. Zachara J. M., Fredrickson J. K., Li S. M., Kennedy D. W., Smith S. C., Gassman P. L.. ( 1998;). Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. . Am Mineral 83:, 1426–1443.
    [Google Scholar]
  31. Zhang J., Wang J., Fang C., Song F., Xin Y., Qu L., Ding K.. ( 2010;). Bacillus oceanisediminis sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 60:, 2924–2929. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049106-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049106-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error