1887

Abstract

A novel Gram-stain-negative, facultatively anaerobic, non-motile and short rod-shaped bacterium, strain KBL009, was isolated from the larval gut of . Strain KBL009 grew optimally at 37 °C, at pH 6.0 and with 1–2 % (w/v) NaCl. The 16S rRNA gene sequence of strain KBL009 showed 97.6 % similarity to that of CCUG 53761A indicating its classification with the genus . The major fatty acids were cyclo-C, C and summed feature 2 (comprising C 3-OH/iso-C). The respiratory quinones were ubiquinone-8 (Q-8), predominating, and a minor amount of Q-7. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unknown aminolipid and five unknown polar lipids. The polyamine pattern contained predominantly putrescine and relatively high amounts of spermidine. The betaproteobacterial-specific 2-hydroxyputrescine could only be detected in trace amounts. The G+C content of genomic DNA was 56.1 mol%. Results from DNA–DNA hybridization with KCTC 23583 unambiguously demonstrated that strain KBL009 represents a novel species in the genus . Based on phenotypic, genotypic and phylogenetic characterization, the novel species sp. nov. is proposed. The type strain is KBL009 ( = KACC 16840 = JCM 18423). An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049098-0
2013-11-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4224.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049098-0&mimeType=html&fmt=ahah

References

  1. Brauman A. , Doré J. , Eggleton P. , Bignell D. , Breznak J. A. , Kane M. D. . ( 2001; ). Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. . FEMS Microbiol Ecol 35:, 27–36. [CrossRef] [PubMed]
    [Google Scholar]
  2. Breznak J. A. . ( 1982; ). Intestinal microbiota of termites and other xylophagous insects. . Annu Rev Microbiol 36:, 323–343. [CrossRef] [PubMed]
    [Google Scholar]
  3. Busse J. , Auling G. . ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  4. Chang H. W. , Nam Y. D. , Jung M. Y. , Kim K. H. , Roh S. W. , Kim M. S. , Jeon C. O. , Yoon J. H. , Bae J. W. . ( 2008; ). Statistical superiority of genome-probing microarrays as genomic DNA–DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. . J Microbiol Methods 75:, 523–530. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. D. , Jones D. . ( 1981a; ). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  6. Collins M. D. , Jones D. . ( 1981b; ). A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. . J Appl Bacteriol 51:, 129–134. [CrossRef] [PubMed]
    [Google Scholar]
  7. Diener S. , Zurbrügg C. , Tockner K. . ( 2009; ). Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. . Waste Manag Res 27:, 603–610. [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  9. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  10. Hamana K. , Takeuchi M. . ( 1998; ). Polyamine profiles as chemotaxonomic markers within alpha, beta, gamma, delta, and epsilon subclasses of class Proteobacteria: distribution of 2-hydroxyputrescine and homospermidine. . Microbiol Cult Collect 14:, 1–14.
    [Google Scholar]
  11. Hamana K. , Saito T. , Okada M. . ( 2000; ). Polyamine profiles within the beta subclass of the class Proteobacteria: distribution of 2-hydroxyputrescine. . Microbiol Cult Collect 16:, 63–69.
    [Google Scholar]
  12. Hamana K. , Sato W. , Gouma K. , Yu J. , Ino Y. , Umemura Y. , Mochizuki C. , Takatsuka X. , Kigure Y. . & other authors ( 2006; ). Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria . . Ann Gunma Health Sci 27:, 1–16.
    [Google Scholar]
  13. Hongoh Y. , Ohkuma M. , Kudo T. . ( 2003; ). Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). . FEMS Microbiol Ecol 44:, 231–242. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jeon H. , Park S. , Choi J. , Jeong G. , Lee S.-B. , Choi Y. , Lee S.-J. . ( 2011; ). The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens . . Curr Microbiol 62:, 1390–1399. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kamekura M. . ( 1993; ). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H. , Hochstein L. I. . . Boca Raton:: CRC Press;.
    [Google Scholar]
  16. Kämpfer P. , Falsen E. , Langer S. , Lodders N. , Busse H.-J. . ( 2010; ). Paenalcaligenes hominis gen. nov., sp. nov., a new member of the family Alcaligenaceae . . Int J Syst Evol Microbiol 60:, 1537–1542. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim J. G. , Choi Y. C. , Choi J. Y. , Kim W. T. , Jeong G. S. , Park K. H. , Hwang S. J. . ( 2008; ). Ecology of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae) in Korea. . Korean J Appl Entomol 47:, 337–343. (Korean). [CrossRef]
    [Google Scholar]
  18. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , Yi H. , Won S. , Chun J. . ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721.[CrossRef]
    [Google Scholar]
  19. Kim J. Y. , Lee J. , Shin N.-R. , Yun J.-H. , Whon T. W. , Kim M.-S. , Jung M.-J. , Roh S. W. , Hyun D.-W. , Bae J.-W. . ( 2013; ). Orbus sasakiae sp. nov., a bacterium isolated from the gut of the butterfly Sasakia charonda, and emended description of the genus Orbus . . Int J Syst Evol Microbiol 63:, 1766–1770. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kluge A. G. , Farris F. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  21. Kudo T. . ( 2009; ). Termite-microbe symbiotic system and its efficient degradation of lignocellulose. . Biosci Biotechnol Biochem 73:, 2561–2567. [CrossRef] [PubMed]
    [Google Scholar]
  22. Loy A. , Schulz C. , Lücker S. , Schöpfer-Wendels A. , Stoecker K. , Baranyi C. , Lehner A. , Wagner M. . ( 2005; ). 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “Rhodocyclales”. . Appl Environ Microbiol 71:, 1373–1386. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mesbah M. , Whitman W. B. . ( 1989; ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef] [PubMed]
    [Google Scholar]
  24. MIDI ( 1999; ). Sherlock Microbial Identification System Operating Manual, version 3.0. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  25. Ohkuma M. . ( 2008; ). Symbioses of flagellates and prokaryotes in the gut of lower termites. . Trends Microbiol 16:, 345–352. [CrossRef] [PubMed]
    [Google Scholar]
  26. Rochelle P. A. , Fry J. C. , Parkes R. J. , Weightman A. J. . ( 1992; ). DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. . FEMS Microbiol Lett 79:, 59–65.[PubMed] [CrossRef]
    [Google Scholar]
  27. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  29. Schmitt-Wagner D. , Friedrich M. W. , Wagner B. , Brune A. . ( 2003; ). Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). . Appl Environ Microbiol 69:, 6007–6017. [CrossRef] [PubMed]
    [Google Scholar]
  30. Stolz A. , Bürger S. , Kuhm A. , Kämpfer P. , Busse H.-J. . ( 2005; ). Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. . Int J Syst Evol Microbiol 55:, 1077–1081. [CrossRef] [PubMed]
    [Google Scholar]
  31. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  32. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  33. Tindall B. J. . ( 1990; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  34. Tittsler R. P. , Sandholzer L. A. . ( 1936; ). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  35. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  36. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049098-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049098-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error