1887

Abstract

A moderately halophilic, Gram-stain-negative, non-sporulating bacterium designed as strain TYRC17 was isolated from olive-processing effluents. The organism was a straight rod, motile by means of peritrichous flagella and able to respire both oxygen and nitrate. Growth occurred with 0–25 % (w/v) NaCl (optimum, 7 %), at pH 5–11 (optimum, pH 7.0) and at 4–50 °C (optimally at 35 °C). It accumulated poly-β-hydroxyalkanoate granules and produced exopolysaccharides. The predominant fatty acids were Cω7, Cω7 and C. Ubiquinone 9 (Q-9) was the only respiratory quinone. The DNA G+C content of TYRC17 was 53.9 mol%. Phylogenetic analyses of 16S rRNA gene sequences revealed that the strain represents a member of the genus and more precisely of the subgroup containing , and . TYRC17 showed high 16S-rRNA sequence identities in particular with the three last species listed (99.4–99.5 %). A multilocus sequence analysis (MLSA) using the 23S rRNA, , and genes allowed clarifying the phylogenetic position of TYRC17. This, combined with the level of DNA–DNA hybridization between TYRC17 and its closest relatives ranging from 21.6 % to 48.4 %, indicated that TYRC17 did not represent any of these species. On the basis of phenotypic and genotypic characteristics, and also genomic and phylogenetic evidence, it was concluded that strain TYRC17 represented a novel species of the genus . The name sp. nov. is proposed with TYRC17 ( = DSM 19074 = CCUG 53850B) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049007-0
2014-01-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/46.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049007-0&mimeType=html&fmt=ahah

References

  1. Amouric A. , Brochier-Armanet C. , Johnson D. B. , Bonnefoy V. , Hallberg K. B. . ( 2011; ). Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. . Microbiology 157:, 111–122. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arahal D. R. , Ludwig W. , Schleifer K. H. , Ventosa A. . ( 2002; ). Phylogeny of the family Halomonadaceae based on 23S and 165 rDNA sequence analyses. . Int J Syst Evol Microbiol 52:, 241–249.[PubMed]
    [Google Scholar]
  3. Arahal D. R. , Vreeland R. H. , Litchfield C. D. , Mormile M. R. , Tindall B. J. , Oren A. , Bejar V. , Quesada E. , Ventosa A. . ( 2007; ). Recommended minimal standards for describing new taxa of the family Halomonadaceae . . Int J Syst Evol Microbiol 57:, 2436–2446. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bauer A. W. , Kirby W. M. , Sherris J. C. , Turck M. . ( 1966; ). Antibiotic susceptibility testing by a standardized single disk method. . Am J Clin Pathol 45:, 493–496.[PubMed]
    [Google Scholar]
  5. Bouchotroch S. , Quesada E. , del Moral A. , Llamas I. , Béjar V. . ( 2001; ). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. . Int J Syst Evol Microbiol 51:, 1625–1632. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen Y.-G. , Zhang Y.-Q. , Huang H.-Y. , Klenk H.-P. , Tang S.-K. , Huang K. , Chen Q.-H. , Cui X.-L. , Li W.-J. . ( 2009; ). Halomonas zhanjiangensis sp. nov., a halophilic bacterium isolated from a sea urchin. . Int J Syst Evol Microbiol 59:, 2888–2893. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cord-Ruwisch R. . ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. . J Microbiol Methods 4:, 33–36. [CrossRef]
    [Google Scholar]
  8. de la Haba R. R. , Arahal D. R. , Márquez M. C. , Ventosa A. . ( 2010; ). Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. . Int J Syst Evol Microbiol 60:, 737–748. [CrossRef] [PubMed]
    [Google Scholar]
  9. de la Haba R. R. , Sanchez-Porro C. , Ventosa A. . ( 2011; ). Taxonomy, phylogeny and biotechnological interest of the family Halomonadaceae . . In Halophiles and Hypersaline Environments, pp. 27–64. Edited by Ventosa A. , Oren A. , Ma Y. . . Berlin, Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  10. de la Haba R. R. , Márquez M. C. , Papke R. T. , Ventosa A. . ( 2012; ). Multilocus sequence analysis of the family Halomonadaceae . . Int J Syst Evol Microbiol 62:, 520–538. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dobson S. J. , Franzmann P. D. . ( 1996; ). Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson & Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . . Int J Syst Bacteriol 46:, 550–558. [CrossRef]
    [Google Scholar]
  12. Fendrich C. . ( 1988; ). Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt Lake, Utah, USA. . Syst Appl Microbiol 11:, 36–43. [CrossRef]
    [Google Scholar]
  13. Franzmann P. D. , Wehmeyer U. , Stackebrandt E. . ( 1988; ). Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . . Syst Appl Microbiol 11:, 16–19. [CrossRef]
    [Google Scholar]
  14. García M. T. , Ventosa A. , Mellado E. . ( 2005; ). Catabolic versatility of aromatic compound-degrading halophilic bacteria. . FEMS Microbiol Ecol 54:, 97–109. [CrossRef] [PubMed]
    [Google Scholar]
  15. Jobb G. , von Haeseler A. , Strimmer K. . ( 2004; ). treefinder: a powerful graphical analysis environment for molecular phylogenetics. . BMC Evol Biol 4:, 18. [CrossRef] [PubMed]
    [Google Scholar]
  16. Katoh K. , Misawa K. , Kuma K.-i. , Miyata T. . ( 2002; ). mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. . Nucleic Acids Res 30:, 3059–3066. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kaye J. Z. , Márquez M. C. , Ventosa A. , Baross J. A. . ( 2004; ). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. . Int J Syst Evol Microbiol 54:, 499–511. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kushner D. J. . ( 1978; ). Life in high salt and solute concentrations: halophilic bacteria. . In Microbial Life in Extreme Environments, pp. 317–368. Edited by Kushner D. J. . . London:: Academic Press;.
    [Google Scholar]
  19. Liebgott P.-P. , Casalot L. , Paillard S. , Lorquin J. , Labat M. . ( 2006; ). Marinobacter vinifirmus sp. nov., a moderately halophilic bacterium isolated from a wine-barrel-decalcification wastewater. . Int J Syst Evol Microbiol 56:, 2511–2516. [CrossRef] [PubMed]
    [Google Scholar]
  20. Liebgott P.-P. , Labat M. , Casalot L. , Amouric A. , Lorquin J. . ( 2007; ). Bioconversion of tyrosol into hydroxytyrosol and 3,4-dihydroxyphenylacetic acid under hypersaline conditions by the new Halomonas sp. strain HTB24. . FEMS Microbiol Lett 276:, 26–33. [CrossRef] [PubMed]
    [Google Scholar]
  21. Liebgott P.-P. , Labat M. , Amouric A. , Tholozan J. L. , Lorquin J. . ( 2008a; ). Tyrosol degradation via the homogentisic acid pathway in a newly isolated Halomonas strain from olive processing effluents. . J Appl Microbiol 105:, 2084–2095. [CrossRef] [PubMed]
    [Google Scholar]
  22. Liebgott P.-P. , Joseph M. , Fardeau M.-L. , Cayol J.-L. , Falsen E. , Chamkh F. , Qatibi A.-I. , Labat M. . ( 2008b; ). Clostridiisalibacter paucivorans gen. nov., sp. nov., a novel moderately halophilic bacterium isolated from olive mill wastewater. . Int J Syst Evol Microbiol 58:, 61–67. [CrossRef] [PubMed]
    [Google Scholar]
  23. Martínez-Cánovas M. J. , Quesada E. , Llamas I. , Béjar V. . ( 2004; ). Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. . Int J Syst Evol Microbiol 54:, 733–737. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mata J. A. , Martínez-Cánovas J. , Quesada E. , Béjar V. . ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25:, 360–375. [CrossRef] [PubMed]
    [Google Scholar]
  25. Oren A. . ( 2002; ). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. . J Ind Microbiol Biotechnol 28:, 56–63.[PubMed] [CrossRef]
    [Google Scholar]
  26. Philippe H. . ( 1993; ). must, a computer package of management utilities for sequences and trees. . Nucleic Acids Res 21:, 5264–5272. [CrossRef] [PubMed]
    [Google Scholar]
  27. Pierantozzi P. , Zampini C. , Torres M. , Isla M. I. , Verdenelli R. A. , Meriles J. M. , Maestri D. . ( 2012; ). Physico-chemical and toxicological assessment of liquid wastes from olive processing-related industries. . J Sci Food Agric 92:, 216–223. [CrossRef] [PubMed]
    [Google Scholar]
  28. Piubeli F. , Grossman M. J. , Fantinatti-Garboggini F. , Durrant L. R. . ( 2012; ). Enhanced reduction of COD and aromatics in petroleum-produced water using indigenous microorganisms and nutrient addition. . Int Biodeter Biodegr 68:, 78–84. [CrossRef]
    [Google Scholar]
  29. Poli A. , Esposito E. , Orlando P. , Lama L. , Giordano A. , de Appolonia F. , Nicolaus B. , Gambacorta A. . ( 2011; ). Halomonas alkaliantarctica sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published. Validation List No. 142. . Int J Syst Evol Microbiol 61:, 2563–2565. [CrossRef]
    [Google Scholar]
  30. Quillaguamán J. , Hatti-Kaul R. , Mattiasson B. , Alvarez M. T. , Delgado O. . ( 2004; ). Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. . Int J Syst Evol Microbiol 54:, 721–725. [CrossRef] [PubMed]
    [Google Scholar]
  31. Roig A. , Cayuela M. L. , Sánchez-Monedero M. A. . ( 2006; ). An overview on olive mill wastes and their valorisation methods. . Waste Manag 26:, 960–969. [CrossRef] [PubMed]
    [Google Scholar]
  32. Ronquist F. , Huelsenbeck J. P. . ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sánchez-Porro C. , Kaur B. , Mann H. , Ventosa A. . ( 2010; ). Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic. . Int J Syst Evol Microbiol 60:, 2768–2774. [CrossRef] [PubMed]
    [Google Scholar]
  34. Slyemi D. , Moinier D. , Brochier-Armanet C. , Bonnefoy V. , Johnson D. B. . ( 2011; ). Characteristics of a phylogenetically ambiguous, arsenic-oxidizing Thiomonas sp., Thiomonas arsenitoxydans strain 3AsT sp. nov.. Arch Microbiol 193:, 439–449. [CrossRef] [PubMed]
    [Google Scholar]
  35. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  36. Spiekermann P. , Rehm B. H. A. , Kalscheuer R. , Baumeister D. , Steinbüchel A. . ( 1999; ). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. . Arch Microbiol 171:, 73–80. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ventosa A. , Quesada E. , Rodriguez-Valera F. , Ruiz-Berraquero F. , Ramos-Cormenzana A. . ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  38. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  39. Zhuang X. , Han Z. , Bai Z. , Zhuang G. , Shim H. . ( 2010; ). Progress in decontamination by halophilic microorganisms in saline wastewater and soil. . Environ Pollut 158:, 1119–1126. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049007-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049007-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error