1887

Abstract

The tree of life is paramount for achieving an integrated understanding of microbial evolution and the relationships between physiology, genealogy and genomics. It provides the framework for interpreting environmental sequence data, whether applied to microbial ecology or to human health. However, there remain many instances where there is ambiguity in our understanding of the phylogeny of major lineages, and/or confounding nomenclature. Here we apply recent genomic sequence data to examine the evolutionary history of members of the classes (phylum ) and (phylum ). Consistent with previous analyses, we find evidence of a specific relationship between them in molecular phylogenies and signatures of the 16S rRNA, 23S rRNA, ribosomal proteins and aminoacyl-tRNA synthetase proteins. Furthermore, by mapping functions over the phylogenetic tree we find that the erysipelotrichia lineages are involved in various stages of genomic reduction, having lost (often repeatedly) a variety of metabolic functions and the ability to form endospores. Although molecular phylogeny has driven numerous taxonomic revisions, we find it puzzling that the most recent taxonomic revision of the phyla and has further separated them into distinct phyla, rather than reflecting their common roots.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048983-0
2013-07-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2727.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048983-0&mimeType=html&fmt=ahah

References

  1. Alm E. J., Huang K. H., Price M. N., Koche R. P., Keller K., Dubchak I. L., Arkin A. P.. ( 2005;). The MicrobesOnline web site for comparative genomics. . Genome Res 15:, 1015–1022. [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  3. Andersson S. G. E., Kurland C. G.. ( 1998;). Reductive evolution of resident genomes. . Trends Microbiol 6:, 263–268. [CrossRef][PubMed]
    [Google Scholar]
  4. Andersson S. G. E., Zomorodipour A., Andersson J. O., Sicheritz-Pontén T., Alsmark U. C. M., Podowski R. M., Näslund A. K., Eriksson A. S., Winkler H. H., Kurland C. G.. ( 1998;). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. . Nature 396:, 133–140. [CrossRef][PubMed]
    [Google Scholar]
  5. Aziz R. K., Devoid S., Disz T., Edwards R. A., Henry C. S., Olsen G. J., Olson R., Overbeek R., Parrello B.. & other authors ( 2012;). SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. . PLoS ONE 7:, e48053. [CrossRef][PubMed]
    [Google Scholar]
  6. Böttger E.. ( 1996;). Approaches for identification of microorganisms. . ASM News 62:, 247–250.
    [Google Scholar]
  7. Camp A. H., Losick R.. ( 2009;). A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. . Genes Dev 23:, 1014–1024. [CrossRef][PubMed]
    [Google Scholar]
  8. Cannone J. J., Subramanian S., Schnare M. N., Collett J. R., D’Souza L. M., Du Y., Feng B., Lin N., Madabusi L. V.. & other authors ( 2002;). The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. . BMC Bioinformatics 3:, 2. [CrossRef][PubMed]
    [Google Scholar]
  9. Chen L. L., Chung W. C., Lin C. P., Kuo C. H.. ( 2012;). Comparative analysis of gene content evolution in phytoplasmas and mycoplasmas. . PLoS ONE 7:, e34407. [CrossRef][PubMed]
    [Google Scholar]
  10. Ciccarelli F. D., Doerks T., von Mering C., Creevey C. J., Snel B., Bork P.. ( 2006;). Toward automatic reconstruction of a highly resolved tree of life. . Science 311:, 1283–1287. [CrossRef][PubMed]
    [Google Scholar]
  11. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T.. & other authors ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Database issue), D141–D145. [CrossRef][PubMed]
    [Google Scholar]
  12. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44:, 812–826. [CrossRef][PubMed]
    [Google Scholar]
  13. Cornell R. L., Glover R. E.. ( 1925;). Joint-ill in lambs. . Vet Rec 5:, 833–839.
    [Google Scholar]
  14. Darland G., Brock T. D., Samsonoff W., Conti S. F.. ( 1970;). A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. . Science 170:, 1416–1418. [CrossRef][PubMed]
    [Google Scholar]
  15. Davis J. J., Olsen G. J.. ( 2010;). Modal codon usage: assessing the typical codon usage of a genome. . Mol Biol Evol 27:, 800–810. [CrossRef][PubMed]
    [Google Scholar]
  16. Davis J. J., Olsen G. J.. ( 2011;). Characterizing the native codon usages of a genome: an axis projection approach. . Mol Biol Evol 28:, 211–221. [CrossRef][PubMed]
    [Google Scholar]
  17. DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L.. ( 2006;). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with arb. . Appl Environ Microbiol 72:, 5069–5072. [CrossRef][PubMed]
    [Google Scholar]
  18. Disz T., Akhter S., Cuevas D., Olson R., Overbeek R., Vonstein V., Stevens R., Edwards R. A.. ( 2010;). Accessing the SEED genome databases via Web services API: tools for programmers. . BMC Bioinformatics 11:, 319. [CrossRef][PubMed]
    [Google Scholar]
  19. Doan T., Morlot C., Meisner J., Serrano M., Henriques A. O., Moran C. P. Jr, Rudner D. Z.. ( 2009;). Novel secretion apparatus maintains spore integrity and developmental gene expression in Bacillus subtilis. . PLoS Genet 5:, e1000566. [CrossRef][PubMed]
    [Google Scholar]
  20. Doolittle R. F., Handy J.. ( 1998;). Evolutionary anomalies among the aminoacyl-tRNA synthetases. . Curr Opin Genet Dev 8:, 630–636. [CrossRef][PubMed]
    [Google Scholar]
  21. Downes J., Olsvik B., Hiom S. J., Spratt D. A., Cheeseman S. L., Olsen I., Weightman A. J., Wade W. G.. ( 2000;). Bulleidia extructa gen. nov., sp. nov., isolated from the oral cavity. . Int J Syst Evol Microbiol 50:, 979–983. [CrossRef][PubMed]
    [Google Scholar]
  22. Edward D. G., Freundt E. A.. ( 1967;). Proposal for Mollicutes as name of the class established for the order Mycoplasmatales. . Int J Syst Bacteriol 17:, 267–268. [CrossRef]
    [Google Scholar]
  23. Felsenstein J.. ( 1978;). Cases in which parsimony or compatibility methods will be positively misleading. . Syst Biol 27:, 401–410. [CrossRef]
    [Google Scholar]
  24. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (Version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  25. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G.. & other authors ( 1995;). The minimal gene complement of Mycoplasma genitalium. . Science 270:, 397–404. [CrossRef][PubMed]
    [Google Scholar]
  26. Freundt E.. ( 1974;). The mycoplasmas. . In Bergey’s Manual of Determinative Bacteriology, , 8th edn., pp. 929–954. Edited by Buchanan R. E., Gibbons N. E... Baltimore, MD:: The Williams and Wilkins Company;.
    [Google Scholar]
  27. Garrity G. M., Bell J. A., Lilburn T.. ( 2005;). The revised road map to the manual. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol 2, pp. 159–187. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  28. Gibbons N., Murray R.. ( 1978;). Proposals concerning the higher taxa of bacteria. . Int J Syst Bacteriol 28:, 1–6. [CrossRef]
    [Google Scholar]
  29. Holdeman L., Cato E., Moore W.. ( 1971;). Clostridium ramosum (Vuillemin) comb. nov.: emended description and proposed neotype strain. . Int J Syst Bacteriol 21:, 35–39. [CrossRef]
    [Google Scholar]
  30. Hugenholtz P., Goebel B. M., Pace N. R.. ( 1998;). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. . J Bacteriol 180:, 4765–4774.[PubMed]
    [Google Scholar]
  31. Johansson K. E., Pettersson B.. ( 2002;). Taxonomy of mollicutes. . In Molecular Biology and Pathogenicity of Mycoplasmas, pp. 1–29. Edited by Razin S., Herrman R... New York:: Kluwer Academic/Plenum Publishers;. [CrossRef]
    [Google Scholar]
  32. Kaneuchi C., Miyazato T., Shinjo T., Mitsuoka T.. ( 1979;). Taxonomic study of helically coiled, sporeforming anaerobes isolated from the intestines of humans and other animals: Clostridium cocleatum sp. nov. and Clostridium spiroforme sp. nov.. Int J Syst Bacteriol 29:, 1–12. [CrossRef]
    [Google Scholar]
  33. Katoh K., Misawa K., Kuma K., Miyata T.. ( 2002;). mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. . Nucleic Acids Res 30:, 3059–3066. [CrossRef][PubMed]
    [Google Scholar]
  34. Khachane A. N., Timmis K. N., Martins dos Santos V. A.. ( 2007;). Dynamics of reductive genome evolution in mitochondria and obligate intracellular microbes. . Mol Biol Evol 24:, 449–456. [CrossRef][PubMed]
    [Google Scholar]
  35. Klieneberger E.. ( 1934;). The colonial development of the organisms of pleuropneumonia and agalactia on serum agar and variations of the morphology under different conditions of growth. . J Pathol Bacteriol 39:, 409–420. [CrossRef]
    [Google Scholar]
  36. Kostanjšek R., Štrus J., Avguštin G.. ( 2007;). ‘Candidatus Bacilloplasma’, a novel lineage of Mollicutes associated with the hindgut wall of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). . Appl Environ Microbiol 73:, 5566–5573. [CrossRef][PubMed]
    [Google Scholar]
  37. Kovbasa S. I.. ( 1995;). Signature analysis of images of a nucleotide sequence (I). . Pattern Recogn Image Anal 5:, 294–298.
    [Google Scholar]
  38. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A.. & other authors ( 1997;). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. . Nature 390:, 249–256. [CrossRef][PubMed]
    [Google Scholar]
  39. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  40. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  41. Letunic I., Bork P.. ( 2007;). Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. . Bioinformatics 23:, 127–128. [CrossRef][PubMed]
    [Google Scholar]
  42. Lin M., Rikihisa Y.. ( 2003;). Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. . Infect Immun 71:, 5324–5331. [CrossRef][PubMed]
    [Google Scholar]
  43. Ludwig W., Schleifer K. H.. ( 2005;). Molecular phylogeny of bacteria based on comparative sequence analysis of conserved genes. . In Microbial Phylogeny and Evolution, Concepts and Controversies, pp. 70–98. Edited by Sapp J... New York:: Oxford University Press;.
    [Google Scholar]
  44. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  45. Ludwig W., Schleifer K. H., Whitman W. B.. ( 2009;). Revised road map to the phylum Firmicutes. . In Bergey's Manual of Systematic Bacteriology, , 2nd edn., vol 3, pp. 1–13. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;. [CrossRef]
    [Google Scholar]
  46. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R.. ( 1994;). The ribosomal database project. . Nucleic Acids Res 22:, 3485–3487. [CrossRef][PubMed]
    [Google Scholar]
  47. Maniloff J.. ( 1996;). The minimal cell genome: “on being the right size”. . Proc Natl Acad Sci U S A 93:, 10004–10006. [CrossRef][PubMed]
    [Google Scholar]
  48. Maniloff J.. ( 2002;). Phylogeny and evolution. . In Molecular Biology and Pathogenicity of Mycoplasmas, pp. 31–43. Edited by Razin S., Herrman R... New York:: Kluwer Academic/Plenum Publishers;. [CrossRef]
    [Google Scholar]
  49. Martini M., Lee I. M., Bottner K. D., Zhao Y., Botti S., Bertaccini A., Harrison N. A., Carraro L., Marcone C.. & other authors ( 2007;). Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. . Int J Syst Evol Microbiol 57:, 2037–2051. [CrossRef][PubMed]
    [Google Scholar]
  50. McCoy A. J., Maurelli A. T.. ( 2006;). Building the invisible wall: updating the chlamydial peptidoglycan anomaly. . Trends Microbiol 14:, 70–77. [CrossRef][PubMed]
    [Google Scholar]
  51. Moran N. A.. ( 1996;). Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. . Proc Natl Acad Sci U S A 93:, 2873–2878. [CrossRef][PubMed]
    [Google Scholar]
  52. Moran N. A., Munson M. A., Baumann P., Ishikawa H.. ( 1993;). A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. . Proc R Soc Lond B Biol Sci 253:, 167–171. [CrossRef]
    [Google Scholar]
  53. Murray R.. ( 1984;). The higher taxa, or, a place for everything…?. In Bergey’s Manual of Systematic Bacteriology, vol 1, pp. 31–34. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  54. Nawrocki E. P.. ( 2009;). Structural RNA homology search and alignment using covariance models. . PhD thesis, Washington Univeristy in St. Louis, St. Louis;, MO, USA:.
  55. Nawrocki E. P., Kolbe D. L., Eddy S. R.. ( 2009;). Infernal 1.0: inference of RNA alignments. . Bioinformatics 25:, 1335–1337. [CrossRef][PubMed]
    [Google Scholar]
  56. Nechitaylo T. Y., Timmis K. N., Golyshin P. N.. ( 2009;). ‘Candidatus Lumbricincola’, a novel lineage of uncultured Mollicutes from earthworms of family Lumbricidae. . Environ Microbiol 11:, 1016–1026. [CrossRef][PubMed]
    [Google Scholar]
  57. Nelson K. E., Weinstock G. M., Highlander S. K., Worley K. C., Creasy H. H., Wortman J. R., Rusch D. B., Mitreva M., Sodergren E.. & other authors ( 2010;). A catalog of reference genomes from the human microbiome. . Science 328:, 994–999. [CrossRef][PubMed]
    [Google Scholar]
  58. Ochman H., Elwyn S., Moran N. A.. ( 1999;). Calibrating bacterial evolution. . Proc Natl Acad Sci U S A 96:, 12638–12643. [CrossRef][PubMed]
    [Google Scholar]
  59. Ogata H., Goto S., Sato K., Fujibuchi W., Bono H., Kanehisa M.. ( 1999;). KEGG: Kyoto encyclopedia of genes and genomes. . Nucleic Acids Res 27:, 29–34. [CrossRef][PubMed]
    [Google Scholar]
  60. Ogawa Y., Ooka T., Shi F., Ogura Y., Nakayama K., Hayashi T., Shimoji Y.. ( 2011;). The genome of Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, reveals new insights into the evolution of Firmicutes and the organism’s intracellular adaptations. . J Bacteriol 193:, 2959–2971. [CrossRef][PubMed]
    [Google Scholar]
  61. Oshima K., Nishida H.. ( 2007;). Phylogenetic relationships among mycoplasmas based on the whole genomic information. . J Mol Evol 65:, 249–258. [CrossRef][PubMed]
    [Google Scholar]
  62. Overbeek R., Begley T., Butler R. M., Choudhuri J. V., Chuang H. Y., Cohoon M., de Crécy-Lagard V., Diaz N., Disz T.. & other authors ( 2005;). The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. . Nucleic Acids Res 33:, 5691–5702. [CrossRef][PubMed]
    [Google Scholar]
  63. Perna N. T., Plunkett G. III, Burland V., Mau B., Glasner J. D., Rose D. J., Mayhew G. F., Evans P. S., Gregor J.. & other authors ( 2001;). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. . Nature 409:, 529–533. [CrossRef][PubMed]
    [Google Scholar]
  64. Razin S.. ( 2006;). The genus Mycoplasma and related genera (Class Mollicutes). . In The Prokaryotes, , 3rd edn., vol 4, pp. 836–904. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  65. Rivas E., Eddy S. R.. ( 2008;). Probabilistic phylogenetic inference with insertions and deletions. . PLOS Comput Biol 4:, e1000172. [CrossRef][PubMed]
    [Google Scholar]
  66. Roberts E., Sethi A., Montoya J., Woese C. R., Luthey-Schulten Z.. ( 2008;). Molecular signatures of ribosomal evolution. . Proc Natl Acad Sci U S A 105:, 13953–13958. [CrossRef][PubMed]
    [Google Scholar]
  67. Rogers M. J., Simmons J., Walker R. T., Weisburg W. G., Woese C. R., Tanner R. S., Robinson I. M., Stahl D. A., Olsen G.. & other authors ( 1985;). Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. . Proc Natl Acad Sci U S A 82:, 1160–1164. [CrossRef][PubMed]
    [Google Scholar]
  68. Sagan L.. ( 1967;). On the origin of mitosing cells. . J Theor Biol 14:, 225–274. [CrossRef][PubMed]
    [Google Scholar]
  69. Sayers E. W., Barrett T., Benson D. A., Bryant S. H., Canese K., Chetvernin V., Church D. M., DiCuccio M., Edgar R.. & other authors ( 2009;). Database resources of the National Center for Biotechnology Information. . Nucleic Acids Res 37: (Database issue), D5–D15. [CrossRef][PubMed]
    [Google Scholar]
  70. Sayers E. W., Barrett T., Benson D. A., Bolton E., Bryant S. H., Canese K., Chetvernin V., Church D. M., DiCuccio M.. & other authors ( 2011;). Database resources of the national center for biotechnology information. . Nucleic Acids Res 39: (Database issue), D38–D51. [CrossRef][PubMed]
    [Google Scholar]
  71. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H.. & other authors ( 2009;). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. . Appl Environ Microbiol 75:, 7537–7541. [CrossRef][PubMed]
    [Google Scholar]
  72. Simpson G. G.. ( 1944;). Tempo and mode in evolution (Columbia biological series vol. 15). New York:: Columbia Univ Press;.
    [Google Scholar]
  73. Sipos M., Jeraldo P., Chia N., Qu A., Dhillon A. S., Konkel M. E., Nelson K. E., White B. A., Goldenfeld N.. ( 2010;). Robust computational analysis of rRNA hypervariable tag datasets. . PLoS ONE 5:, e15220. [CrossRef][PubMed]
    [Google Scholar]
  74. Smith L. D., King E.. ( 1962;). Clostridium innocuum, sp. n., a sporeforming anaerobe isolated from human infections. . J Bacteriol 83:, 938–939.[PubMed]
    [Google Scholar]
  75. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  76. Stamatakis A., Hoover P., Rougemont J.. ( 2008;). A rapid bootstrap algorithm for the RAxML Web servers. . Syst Biol 57:, 758–771. [CrossRef][PubMed]
    [Google Scholar]
  77. Stephens E. B., Robinson I. M., Barile M. F.. ( 1985;). Nucleic acid relationships among the anaerobic mycoplasmas. . J Gen Microbiol 131:, 1223–1227.[PubMed]
    [Google Scholar]
  78. Tavaré S.. ( 1986;). Some probabilistic and statistical problems in the analysis of DNA sequences. . Lect Math Life Sci 17:, 57–86.
    [Google Scholar]
  79. Traag B. A., Driks A., Stragier P., Bitter W., Broussard G., Hatfull G., Chu F., Adams K. N., Ramakrishnan L., Losick R.. ( 2010;). Do mycobacteria produce endospores?. Proc Natl Acad Sci U S A 107:, 878–881. [CrossRef][PubMed]
    [Google Scholar]
  80. Turnbaugh P. J., Ley R. E., Hamady M., Fraser-Liggett C. M., Knight R., Gordon J. I.. ( 2007;). The human microbiome project. . Nature 449:, 804–810. [CrossRef][PubMed]
    [Google Scholar]
  81. Turnbaugh P. J., Bäckhed F., Fulton L., Gordon J. I.. ( 2008;). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. . Cell Host Microbe 3:, 213–223. [CrossRef][PubMed]
    [Google Scholar]
  82. Wang Y., Stingl U., Anton-Erxleben F., Geisler S., Brune A., Zimmer M.. ( 2004;). ‘Candidatus hepatoplasma crinochetorum,’ a new, stalk-forming lineage of Mollicutes colonizing the midgut glands of a terrestrial isopod. . Appl Environ Microbiol 70:, 6166–6172. [CrossRef][PubMed]
    [Google Scholar]
  83. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G.. & other authors ( 1989;). A phylogenetic analysis of the mycoplasmas: basis for their classification. . J Bacteriol 171:, 6455–6467.[PubMed]
    [Google Scholar]
  84. Wheeler D. L., Barrett T., Benson D. A., Bryant S. H., Canese K., Chetvernin V., Church D. M., DiCuccio M., Edgar R.. & other authors ( 2007;). Database resources of the National Center for Biotechnology Information. . Nucleic Acids Res 35: (Database issue), D5–D12. [CrossRef][PubMed]
    [Google Scholar]
  85. Whelan S., Goldman N.. ( 2001;). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. . Mol Biol Evol 18:, 691–699. [CrossRef][PubMed]
    [Google Scholar]
  86. Woese C. R.. ( 1987;). Bacterial evolution. . Microbiol Rev 51:, 221–271.[PubMed]
    [Google Scholar]
  87. Woese C. R., Fox G. E.. ( 1977;). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. . Proc Natl Acad Sci U S A 74:, 5088–5090. [CrossRef][PubMed]
    [Google Scholar]
  88. Woese C. R., Maniloff J., Zablen L. B.. ( 1980;). Phylogenetic analysis of the mycoplasmas. . Proc Natl Acad Sci U S A 77:, 494–498. [CrossRef][PubMed]
    [Google Scholar]
  89. Woese C. R., Stackebrandt E., Ludwig W.. ( 1985;). What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. . J Mol Evol 21:, 305–316. [CrossRef][PubMed]
    [Google Scholar]
  90. Woese C. R., Olsen G. J., Ibba M., Söll D.. ( 2000;). Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. . Microbiol Mol Biol Rev 64:, 202–236. [CrossRef][PubMed]
    [Google Scholar]
  91. Wu M., Eisen J. A.. ( 2008;). A simple, fast, and accurate method of phylogenomic inference. . Genome Biol 9:, R151. [CrossRef][PubMed]
    [Google Scholar]
  92. Wu D., Hugenholtz P., Mavromatis K., Pukall R., Dalin E., Ivanova N. N., Kunin V., Goodwin L., Wu M.. & other authors ( 2009;). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. . Nature 462:, 1056–1060. [CrossRef][PubMed]
    [Google Scholar]
  93. Yang Z.. ( 1996;). Among-site rate variation and its impact on phylogenetic analyses. . Trends Ecol Evol 11:, 367–372. [CrossRef][PubMed]
    [Google Scholar]
  94. Zhao Y., Davis R. E., Lee I. M.. ( 2005;). Phylogenetic positions of ‘Candidatus Phytoplasma asteris’ and Spiroplasma kunkelii as inferred from multiple sets of concatenated core housekeeping proteins. . Int J Syst Evol Microbiol 55:, 2131–2141. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048983-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048983-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error