1887

Abstract

A novel thermotolerant bacterium, designated SgZ-8, was isolated from a compost sample. Cells were non-motile, endospore-forming, Gram-staining positive, oxidase-negative and catalase-positive. The isolate was able to grow at 20–65 °C (optimum 50 °C) and pH 6.0–9.0 (optimum 6.5–7.0), and tolerate up to 9.0 % NaCl (w/v) under aerobic conditions. Anaerobic growth occurred with anthraquinone-2,6-disulphonate (AQDS), fumarate and NO as electron acceptors. Phylogenetic analysis based on the16S rRNA and B genes grouped strain SgZ-8 into the genus , with the highest similarity to JCM 12228 (96.2 % for 16S rRNA gene sequence and 83.5 % for B gene sequence) among all recognized species in the genus . The G+C content of the genomic DNA was 49.3 mol%. The major isoprenoid quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major cellular fatty acid was iso-C. On the basis of its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-8 ( = CCTCC AB 2012108 = KACC 16706) was designated the type strain of a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048942-0
2013-10-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3672.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048942-0&mimeType=html&fmt=ahah

References

  1. Baker G. C., Smith J. J., Cowan D. A.. ( 2003;). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55:, 541–555. [CrossRef][PubMed]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  3. Derekova A., Mandeva R., Kambourova M.. ( 2008;). Phylogenetic diversity of thermophilic carbohydrate degrading bacilli from Bulgarian hot springs. . World J Microbiol Biotechnol 24:, 1697–1702. [CrossRef]
    [Google Scholar]
  4. Fahmy F., Flossdorf J., Claus D.. ( 1985;). The DNA base composition of the type strains of the genus Bacillus. . Syst Appl Microbiol 6:, 60–65. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Field J. A., Cervantes F. J.. ( 2005;). Microbial redox reactions mediated by humus and structurally related quinones. . In Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice (NATO Science Series, vol. 52), pp. 343–352. Edited by Perminova I. V., Hatfield K., Hertkorn N... Dordrecht:: Springer;. [CrossRef]
    [Google Scholar]
  7. Heyrman J., Rodríguez-Díaz M., Devos J., Felske A., Logan N. A., De Vos P.. ( 2005;). Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. . Int J Syst Evol Microbiol 55:, 111–117. [CrossRef][PubMed]
    [Google Scholar]
  8. Kämpfer P.. ( 1994;). Limits and possibilities of total fatty acid analysis for classification and identification of Bacillis species. . Syst Appl Microbiol 17:, 86–98. [CrossRef]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  12. Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips E. J. P., Woodward J. C.. ( 1996;). Humic substances as electron acceptors for microbial respiration. . Nature 382:, 445–448. [CrossRef]
    [Google Scholar]
  13. Ma C., Zhuang L., Zhou S. G., Yang G. Q., Yuan Y., Xu R. X.. ( 2012;). Alkaline extracellular reduction: isolation and characterization of an alkaliphilic and halotolerant bacterium, Bacillus pseudofirmus MC02. . J Appl Microbiol 112:, 883–891. [CrossRef][PubMed]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  16. Palmisano M. M., Nakamura L. K., Duncan K. E., Istock C. A., Cohan F. M.. ( 2001;). Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. . Int J Syst Evol Microbiol 51:, 1671–1679. [CrossRef][PubMed]
    [Google Scholar]
  17. Rheims H., Frühling A., Schumann P., Rohde M., Stackebrandt E.. ( 1999;). Bacillus silvestris sp. nov., a new member of the genus Bacillus that contains lysine in its cell wall. . Int J Syst Bacteriol 49:, 795–802. [CrossRef][PubMed]
    [Google Scholar]
  18. Rzhetsky A., Nei M.. ( 1993;). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10:, 1073–1095.[PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI.
  21. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  22. Straub K. L., Kappler A., Schink B.. ( 2005;). Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria. . Methods Enzymol 397:, 58–77. [CrossRef][PubMed]
    [Google Scholar]
  23. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  24. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  26. Tiago I., Pires C., Mendes V., Morais P. V., da Costa M. S., Veríssimo A.. ( 2006;). Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. . Int J Syst Evol Microbiol 56:, 2571–2574. [CrossRef][PubMed]
    [Google Scholar]
  27. Vaz-Moreira I., Figueira V., Lopes A. R., Lobo-da-Cunha A., Spröer C., Schumann P., Nunes O. C., Manaia C. M.. ( 2012;). Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant. . Int J Syst Evol Microbiol 62:, 71–77. [CrossRef][PubMed]
    [Google Scholar]
  28. Wang L. T., Lee F. L., Tai C. J., Kasai H.. ( 2007;). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. . Int J Syst Evol Microbiol 57:, 1846–1850. [CrossRef][PubMed]
    [Google Scholar]
  29. Wu C. Y., Zhuang L., Zhou S. G., Li F. B., He J.. ( 2011;). Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. . Int J Syst Evol Microbiol 61:, 882–887. [CrossRef][PubMed]
    [Google Scholar]
  30. Yamamoto S., Harayama S.. ( 1995;). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. . Appl Environ Microbiol 61:, 1104–1109.[PubMed]
    [Google Scholar]
  31. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S.. ( 2000;). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. . Microbiology 146:, 2385–2394.[PubMed]
    [Google Scholar]
  32. Yamamura S., Watanabe M., Kanzaki M., Soda S., Ike M.. ( 2008;). Removal of arsenic from contaminated soils by microbial reduction of arsenate and quinone. . Environ Sci Technol 42:, 6154–6159. [CrossRef][PubMed]
    [Google Scholar]
  33. Zachara J. M., Fredrickson J. K., Li S. M., Kennedy D. W., Smith S. C., Gassman P. L.. ( 1998;). Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. . American Mineralogist 83:, 1426–1443.
    [Google Scholar]
  34. Zhang J., Wang J., Fang C., Song F., Xin Y., Qu L., Ding K.. ( 2010;). Bacillus oceanisediminis sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 60:, 2924–2929. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048942-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048942-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error