1887

Abstract

The taxonomic position of three -like micro-organisms (strains SG293, SG296 and SG310) isolated from fermented rice grain ( L. subsp. ) in Japan was investigated. These heterofermentative lactic acid bacteria were Gram-stain-positive, rod-shaped, facultatively anaerobic, non-motile, non-spore-forming and did not show catalase activity. 16S rRNA gene sequence analysis of strain SG293 revealed that the type strains of (98.3 %), (96.2 %), (96.1 %), (96.1 %), (95.9 %) and (95.7 %) were the closest neighbours. Additional phylogenetic analysis on the basis of and gene sequences, as well as biochemical and physiological characteristics, indicated that these three strains were members of the genus and that the novel isolates had a unique taxonomic position. The predominant cellular fatty acids were Cω9 and C cyclo 9,10. Because low DNA–DNA hybridization values among the isolates and JCM 12497 were observed, it is proposed that these unidentified isolates be classified as a novel species of the genus , sp. nov. The type strain is SG293 ( = JCM 18671 = DSM 26518).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048918-0
2013-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/2957.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048918-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Cai Y., Pang H., Kitahara M., Ohkuma M.. ( 2012;). Lactobacillus nasuensis sp. nov., a lactic acid bacterium isolated from silage, and emended description of the genus Lactobacillus. . Int J Syst Evol Microbiol 62:, 1140–1144. [CrossRef][PubMed]
    [Google Scholar]
  3. Cousin S., Gulat-Okalla M. L., Motreff L., Gouyette C., Bouchier C., Clermont D., Bizet C.. ( 2012;). Lactobacillus gigeriorum sp. nov., isolated from chicken crop. . Int J Syst Evol Microbiol 62:, 330–334. [CrossRef][PubMed]
    [Google Scholar]
  4. Ennahar S., Cai Y., Fujita Y.. ( 2003;). Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. . Appl Environ Microbiol 69:, 444–451. [CrossRef][PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Hitchener B. J., Egan A. F., Rogers P. J.. ( 1982;). Characteristics of lactic acid bacteria isolated from vacuum-packaged beef. . J Appl Bacteriol 52:, 31–37. [CrossRef][PubMed]
    [Google Scholar]
  7. Irisawa T., Okada S.. ( 2009;). Lactobacillus sucicola sp. nov., a motile lactic acid bacterium isolated from oak tree (Quercus sp.) sap. . Int J Syst Evol Microbiol 59:, 2662–2665. [CrossRef][PubMed]
    [Google Scholar]
  8. Kaksonen A. H., Spring S., Schumann P., Kroppenstedt R. M., Puhakka J. A.. ( 2008;). Desulfotomaculum alcoholivorax sp. nov., a moderately thermophilic, spore-forming, sulfate-reducer isolated from a fluidized-bed reactor treating acidic metal- and sulfate-containing wastewater. . Int J Syst Evol Microbiol 58:, 833–838. [CrossRef][PubMed]
    [Google Scholar]
  9. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  10. Kitahara M., Sakamoto M., Benno Y.. ( 2010;). Lactobacillus similis sp. nov., isolated from fermented cane molasses. . Int J Syst Evol Microbiol 60:, 187–190. [CrossRef][PubMed]
    [Google Scholar]
  11. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  12. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H.. ( 1998;). Bacterial phylogeny based on comparative sequence analysis. . Electrophoresis 19:, 554–568. [CrossRef][PubMed]
    [Google Scholar]
  13. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J.. ( 2005;). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. . Microbiology 151:, 2141–2150. [CrossRef][PubMed]
    [Google Scholar]
  14. Naser S. M., Dawyndt P., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Vancanneyt M., Swings J.. ( 2007;). Identification of lactobacilli by pheS and rpoA gene sequence analyses. . Int J Syst Evol Microbiol 57:, 2777–2789. [CrossRef][PubMed]
    [Google Scholar]
  15. Okada S., Suzuki Y., Kozaki M.. ( 1979;). New heterofermentative Lactobacillus species with meso-diaminopimelic acid in peptidoglycan, Lactobacillus vaccinostercus Kozaki and Okada sp. nov.. J Gen Appl Microbiol 25:, 215–221. [CrossRef]
    [Google Scholar]
  16. Oki K., Kudo Y., Watanabe K.. ( 2012;). Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 62:, 601–607. [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  18. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y.. ( 2002;). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov.. Int J Syst Evol Microbiol 52:, 841–849. [CrossRef][PubMed]
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: A place for DNA–DNA reassociation and 16s rRNA sequence-analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  20. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K.. ( 1996;). Agromyces mediolanus sp. nov., nom. rev., comb. nov., a species for “Corynebacterium mediolanum” Mamoli 1939 and for some aniline-assimilating bacteria which contain 2,4-diaminobutyric acid in the cell wall peptidoglycan. . Int J Syst Bacteriol 46:, 88–93. [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  22. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  23. Tohno M., Kobayashi H., Nomura M., Kitahara M., Ohkuma M., Uegaki R., Cai Y.. ( 2012a;). Genotypic and phenotypic characterization of lactic acid bacteria isolated from Italian ryegrass silage. . Anim Sci J 83:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  24. Tohno M., Kobayashi H., Nomura M., Uegaki R., Cai Y.. ( 2012b;). Identification and characterization of lactic acid bacteria isolated from mixed pasture of timothy and orchardgrass, and its badly preserved silage. . Anim Sci J 83:, 318–330. [CrossRef][PubMed]
    [Google Scholar]
  25. Tohno M., Kobayashi H., Tajima K., Uegaki R.. ( 2012c;). Strain-dependent effects of inoculation of Lactobacillus plantarum subsp. plantarum on fermentation quality of paddy rice (Oryza sativa L. subsp. japonica) silage. . FEMS Microbiol Lett 337:, 112–119. [CrossRef][PubMed]
    [Google Scholar]
  26. Tohno M., Kitahara M., Inoue H., Uegaki R., Irisawa T., Ohkuma M., Tajima K.. ( 2013;). Weissella oryzae sp. nov., isolated from fermented rice grains. . Int J Syst Evol Microbiol 63:, 1417–1420. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048918-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048918-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error