1887

Abstract

Two strains, PB34 and PB261, were isolated from grass soil sampled in Daejeon, Republic of Korea. Comparative 16S rRNA gene sequence studies showed the two bacteria to be clearly affiliated with the phylum and most closely related to the genus , showing 16S rRNA gene sequence similarities to the type strains of species of the genus of 95.0–96.3 % and sharing 98.5 % similarity between the two strains. The two strains were Gram-stain-positive, aerobic, motile and rod-shaped bacteria. The peptidoglycan contained -diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H) and MK-9(H). The major fatty acids were iso-C, iso-C, iso-C and summed feature 3 (Cω7 and/or Cω6) for strain PB34 and iso-C, iso-C, iso-C and C for strain PB261. The G+C contents of the genomic DNA of strains PB34 and PB261 were 73.2 mol% and 74.1 mol%, respectively. Thus, based on the evidence of a polyphasic study, it is proposed that strains PB34 and PB261 represent two novel species, for which the names sp. nov. (type strain PB34 = KCTC 19880 = JCM 17785) and sp. nov. (type strain PB261 = KCTC 19881 = JCM 17786) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048892-0
2013-07-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2625.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048892-0&mimeType=html&fmt=ahah

References

  1. Bates R. G., Bower V. E.. ( 1956;). Alkaline solutions for pH control. . Anal Chem 28:, 1322–1324. [CrossRef]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  4. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. . Methods Enzymol 1:, 138–146. [CrossRef]
    [Google Scholar]
  5. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  6. Ivanova N., Sikorski J., Jando M., Munk C., Lapidus A., Glavina Del Rio T., Copeland A., Tice H., Cheng J.-F.. & other authors ( 2010;). Complete genome sequence of Geodermatophilus obscurus type strain (G-20). . Stand Genomic Sci 2:, 158–167. [CrossRef][PubMed]
    [Google Scholar]
  7. Jordal P. B., Dueholm M. S., Larsen P., Petersen S. V., Enghild J. J., Christiansen G., Højrup P., Nielsen P. H., Otzen D. E.. ( 2009;). Widespread abundance of functional bacterial amyloid in mycolata and other Gram-positive bacteria. . Appl Environ Microbiol 75:, 4101–4110. [CrossRef][PubMed]
    [Google Scholar]
  8. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  9. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  10. Kudukhashvili P. G., Gurielidze M. A., Pataraya D. T.. ( 2001;). Study of the lytic activities of actinomycetes isolated from different soils in Georgia. . Appl Biochem Microbiol 37:, 251–252. [CrossRef]
    [Google Scholar]
  11. Kuhlman K. R., Allenbach L. B., Ball C. L., Fusco W. G., La Duc M. T., Kuhlman G. M., Anderson R. C., Stuecker T., Erickson I. K.. & other authors ( 2005;). Enumeration, isolation, and characterization of ultraviolet (UV-C) resistant bacteria from rock varnish in the Whipple Mountains, California. . Icarus 174:, 585–595. [CrossRef]
    [Google Scholar]
  12. Kumar S., Tamura K., Nei M.. ( 2004;). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  14. Luedemann G. M.. ( 1968;). Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales). . J Bacteriol 96:, 1848–1858.[PubMed]
    [Google Scholar]
  15. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  16. Montero-Calasanz M. C., Göker M., Pötter G., Rohde M., Spröer C., Schumann P., Gorbushina A. A., Klenk H.-P.. ( 2012a;). Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad. . Extremophiles 16:, 903–909. [CrossRef][PubMed]
    [Google Scholar]
  17. Montero-Calasanz M. C., Göker M., Rohde M., Schumann P., Pötter G., Spröer C., Gorbushina A. A., Klenk H.-P.. ( 2012b;). Geodermatophilus siccatus sp. nov., isolated from arid sand of the Saharan desert in Chad. . Antonie van Leeuwenhoek. 195:, 153–159. [CrossRef]
    [Google Scholar]
  18. Montero-Calasanz M. D., Göker M., Pötter G., Rohde M., Spröer C., Schumann P., Klenk H.-P., Gorbushina A. A.. ( 2012c;). Geodermatophilus telluris sp. nov., a novel actinomycete isolated from Saharan desert sand in Chad. . Int J Syst Evol Microbiol. 63:, 2254–2259. [CrossRef][PubMed]
    [Google Scholar]
  19. Nie G.-X., Ming H., Li S., Zhou E.-M., Cheng J., Yu T.-T., Zhang J., Feng H.-G., Tang S.-K., Li W.-J.. ( 2012;). Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. . Antonie van Leeuwenhoek 101:, 811–817. [CrossRef][PubMed]
    [Google Scholar]
  20. Normand P.. ( 2006;). Geodermatophilaceae fam. nov., a formal description. . Int J Syst Evol Microbiol 56:, 2277–2278. [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Sasser M.. ( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  23. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phased high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  24. Tarrand J. J., Gröschel D. H. M.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R. , Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  27. Zhang Y. Q., Chen J., Liu H. Y., Zhang Y. Q., Li W. J., Yu L. Y.. ( 2011;). Geodermatophilus ruber sp. nov., isolated from rhizosphere soil of a medicinal plant. . Int J Syst Evol Microbiol 61:, 190–193. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048892-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048892-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error