1887

Abstract

A Gram-stain-negative, aerobic, non-spore-forming, curved, rod-shaped bacterium, H-E3-2, was isolated from a water sample taken from Daechung Reservoir, Republic of Korea, during the late-blooming period of cyanobacteria. Strain H-E3-2 was motile with a single polar flagellum or non-motile (stalked cell). Comparative 16S rRNA gene sequence studies showed the isolate had a clear affiliation with the class and was most closely related to ATCC 15257 and LMG 24261, showing 97.6 and 97.3 % 16S rRNA gene sequence similarity, respectively, and 95.3–96.3 % similarity to all other species of the genus . The predominant ubiquinone was Q-10. The major fatty acids were summed feature 8 (Cω6 and/or Cω7) and C. The G+C content of the genomic DNA of strain H-E3-2 was 64.7 mol%. DNA–DNA hybridization values of strain H-E3-2 with ATCC 15257 and LMG 24261 were 21.2 and 19.7 %, respectively. Thus, based on the results of polyphasic analysis, it is proposed that strain H-E3-2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is H-E3-2 ( = KCTC 32211 = JCM 18689).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048884-0
2013-07-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2559.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048884-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Strömpl C., Meyer H., Lindholst S., Moore E. R. B., Christ R., Vancanneyt M., Tindall B. J., Bennasar A.. & other authors ( 1999;). Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. . Int J Syst Bacteriol 49:, 1053–1073. [CrossRef][PubMed]
    [Google Scholar]
  2. Abraham W.-R., Macedo A. J., Lünsdorf H., Fischer R., Pawelczyk S., Smit J., Vancanneyt M.. ( 2008;). Phylogeny by a polyphasic approach of the order Caulobacterales, proposal of Caulobacter mirabilis sp. nov., Phenylobacterium haematophilum sp. nov. and Phenylobacterium conjunctum sp. nov., and emendation of the genus Phenylobacterium. . Int J Syst Evol Microbiol 58:, 1939–1949. [CrossRef][PubMed]
    [Google Scholar]
  3. Bates R. G., Bower V. E.. ( 1956;). Alkaline solutions for pH control. . Anal Chem 28:, 1322–1324. [CrossRef]
    [Google Scholar]
  4. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  5. Chen H., Jogler M., Rohde M., Klenk H. P., Busse H.-J., Tindall B.-J., Spröer C., Overmann J.. ( 2012;). Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. . Int J Syst Evol Microbiol 62:, 2835–2843. [CrossRef][PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. . Methods Enzymol 1:, 138–146. [CrossRef]
    [Google Scholar]
  11. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  12. Henrici A. T., Johnson D. E.. ( 1935;). Studies on fresh water bacteria. II. Stalked bacteria, a new order of schizomycetes. . J Bacteriol 30:, 61–93.[PubMed]
    [Google Scholar]
  13. Jin L., Huy H., Lee H.-G., Ko S.-R., Ahn C.-Y., Oh H.-M.. ( 2013;). Belnapia soli sp. nov., a novel proteobacterium isolated from grass soil. . Int J Syst Evol Microbiol 63:, 1955–1959. [CrossRef][PubMed]
    [Google Scholar]
  14. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  16. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9:, 299–306. [CrossRef][PubMed]
    [Google Scholar]
  17. Liu Q.-M., Ten L. N., Im W.-T., Lee S.-T., Yoon M.-H.. ( 2010;). Caulobacter ginsengisoli sp. nov., a novel stalked bacterium isolated from ginseng cultivating soil. . J Microbiol Biotechnol 20:, 15–20.[PubMed]
    [Google Scholar]
  18. Poindexter J. S.. ( 1964;). Biological properties and classification of the Caulobacter group. . Bacteriol Rev 28:, 231–295.[PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  21. Stahl D. A., Key R., Flesher B., Smit J.. ( 1992;). The phylogeny of marine and freshwater caulobacters reflects their habitat. . J Bacteriol 174:, 2193–2198.[PubMed]
    [Google Scholar]
  22. Staley J. T.. ( 1968;). Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. . J Bacteriol 95:, 1921–1942.[PubMed]
    [Google Scholar]
  23. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phased high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  24. Tarrand J. J., Gröschel D. H. M.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  26. Urakami T., Oyanagi H., Araki H., Suzuki K. I., Komagata K.. ( 1990;). Recharacterization and emended description of the genus Mycoplana and description of two new species, Mycoplana ramosa and Mycoplana segnis. . Int J Syst Bacteriol 40:, 434–442. [CrossRef]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048884-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048884-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error