1887

Abstract

A Gram-staining-negative, non-spore-forming endophytic bacterium, designated strain YC6887, was isolated from a root sample of a halophyte, , collected from a tidal flat area of Namhae Island, located at the southern end of Korea. Strain YC6887 was found to exhibit inhibitory activity against oomycete plant pathogens. The cells were non-motile and aerobic rods. The strain was able to grow at 4–40 °C (optimum 28–30 °C) and at pH 5.0–9.0 (optimum pH 7.0–8.5). Strain YC6887 was able to grow at NaCl concentrations of 0–9 % (w/v) with optimum growth at 4–5 % (w/v) NaCl, but NaCl is not essential for growth. Comparison of 16S rRNA gene sequences showed that the strain was a member of the genus , a member of order , exhibiting highest similarity with (98.6 %). The DNA–DNA relatedness between strain YC6887 and MACL11 was 19.8±6.8. Chemotaxonomically, strain YC6887 contained C cyclo ω8 (28.0 %) and Cω7 (17.9 %) as predominant fatty acids, confirming the affiliation of strain YC6887 with the genus . The major respiratory quinone was Q-10 and the DNA G+C content was 62.1 mol%. On the basis of phylogenetic analysis, physiological and biochemical characterization and DNA–DNA hybridization data, strain YC6887 should be classified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YC6887 ( = KCCM 43011 = NBRC 109149).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048785-0
2013-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/2914.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048785-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. ( 1995;). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  2. Bibi F., Chung E. J., Yoon H. S., Song G. C., Jeon C. O., Chung Y. R.. ( 2011;). Haloferula luteola sp. nov., an endophytic bacterium isolated from the root of a halophyte, Rosa rugosa, and emended description of the genus Haloferula. . Int J Syst Evol Microbiol 61:, 1837–1841. [CrossRef][PubMed]
    [Google Scholar]
  3. Bibi F., Yasir M., Song G. C., Lee S. Y., Chung Y. R.. ( 2012;). Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens. . Plant Pathol J 28:, 20–31. [CrossRef]
    [Google Scholar]
  4. Cappuccino J. G., Sherman N.. ( 2002;). Microbiology: a Laboratory Manual, , 6th edn.. Menlo Park, CA:: Benjamin Cummings;.
    [Google Scholar]
  5. Cho J. C., Giovannoni S. J.. ( 2003;). Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order ‘Rhizobiales’. . Int J Syst Evol Microbiol 53:, 1853–1859. [CrossRef][PubMed]
    [Google Scholar]
  6. Denner E. B. M., Smith G. W., Busse H. J., Schumann P., Narzt T., Polson S. W., Lubitz W., Richardson L. L.. ( 2003;). Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. . Int J Syst Evol Microbiol 53:, 1115–1122. [CrossRef][PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  10. Hendricks C. W., Doyle J. D., Hugley B.. ( 1995;). A new solid medium for enumerating cellulose-utilizing bacteria in soil. . Appl Environ Microbiol 61:, 2016–2019.[PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  13. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  14. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  16. Rathsack K., Reitner J., Stackebrandt E., Tindall B. J.. ( 2011;). Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. . Int J Syst Evol Microbiol 61:, 2722–2728. [CrossRef][PubMed]
    [Google Scholar]
  17. Rivas R., Sánchez-Márquez S., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2005;). Martelella mediterranea gen. nov., sp. nov., a novel α-proteobacterium isolated from a subterranean saline lake. . Int J Syst Evol Microbiol 55:, 955–959. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  20. Schaal K. P.. ( 1986;). Genus Actinomyces Harz 1877, 133AL. . In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1383–1418. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  22. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  25. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  26. Yasir M., Aslam Z., Song G. C., Jeon C. O., Chung Y. R.. ( 2010;). Sphingosinicella vermicomposti sp. nov., isolated from vermicompost, and emended description of the genus Sphingosinicella. . Int J Syst Evol Microbiol 60:, 580–584. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048785-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048785-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error