subsp. subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso Free

Abstract

is divided into five subspecies based on phenotypic and genotypic differences. A novel isolate, designated ZN7a-9, was isolated from malted sorghum wort used for making an alcoholic beverage (dolo) in Burkina Faso. The results of 16S rRNA gene sequencing, DNA–DNA hybridization and peptidoglycan cell-wall structure type analyses indicated that it belongs to the species . The genome sequence of isolate ZN7a-9 was determined by Illumina-based sequencing. Multilocus sequence typing (MLST) and split-decomposition analyses were performed on seven concatenated housekeeping genes obtained from the genome sequence of strain ZN7a-9 together with 41 additional strains. The results of the MLST and split-decomposition analyses could not establish the exact subspecies of represented by strain ZN7a-9 as it clustered with strains unassigned to any of the recognized subspecies of . Strain ZN7a-9 additionally differed from the recognized type strains of the subspecies of with respect to its carbohydrate fermentation profile. In conclusion, the cumulative results indicate that strain ZN7a-9 represents a novel subspecies of closely related to subsp. and subsp. for which the name subsp. subsp. nov. is proposed. The type strain is ZN7a-9 = DSM 26046 = LMG 27067.

Funding
This study was supported by the:
  • Chr. Hansen, Denmark
  • Danish Ministry of Foreign Affairs
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048769-0
2013-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3720.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048769-0&mimeType=html&fmt=ahah

References

  1. Bandelt H. J., Dress A. W. M. ( 1992 ). Split decomposition: a new and useful approach to phylogenetic analysis of distance data. . Mol Phylogenet Evol 1, 242252. [View Article] [PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A. (editors) ( 1993 ). Cowan and Steel’s Manual for the Identification of MedicalBbacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [View Article]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. ( 1977 ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81, 461466. [View Article] [PubMed]
    [Google Scholar]
  4. Cebeci A., Gürakan G. C. ( 2011 ). Comparative typing of L. delbrueckii subsp. bulgaricus strains using multilocus sequence typing and RAPD–PCR. . Eur Food Res Technol 233, 377385. [View Article]
    [Google Scholar]
  5. De Bruyne K., Camu N., De Vuyst L., Vandamme P. ( 2009 ). Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. . Int J Syst Evol Microbiol 59, 712. [View Article] [PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [View Article] [PubMed]
    [Google Scholar]
  7. Dellaglio F., Felis G. E., Castioni A., Torriani S., Germond J.-E. ( 2005 ). Lactobacillus delbrueckii subsp. indicus subsp. nov., isolated from Indian dairy products. . Int J Syst Evol Microbiol 55, 401404. [View Article] [PubMed]
    [Google Scholar]
  8. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  9. Gatti M., Fornasari M. E., Neviani E. ( 2001 ). Differentiation of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis by SDS-PAGE of cell-wall proteins. . Lett Appl Microbiol 32, 352356. [View Article] [PubMed]
    [Google Scholar]
  10. Germond J.-E., Lapierre L., Delley M., Mollet B., Felis G. E., Dellaglio F. ( 2003 ). Evolution of the bacterial species Lactobacillus delbrueckii: a partial genomic study with reflections on prokaryotic species concept. . Mol Biol Evol 20, 93104. [View Article] [PubMed]
    [Google Scholar]
  11. Huson D. H., Bryant D. ( 2006 ). Application of phylogenetic networks in evolutionary studies. . Mol Biol Evol 23, 254267. [View Article] [PubMed]
    [Google Scholar]
  12. Huss V. A. R., Festl H., Schleifer K. H. ( 1983 ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4, 184192. [View Article] [PubMed]
    [Google Scholar]
  13. Kudo Y., Oki K., Watanabe K. ( 2012 ). Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle. . Int J Syst Evol Microbiol 62, 26432649. [View Article] [PubMed]
    [Google Scholar]
  14. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W. ( 2007 ). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. . Nucleic Acids Res 35, 31003108. [View Article] [PubMed]
    [Google Scholar]
  15. Leichmann G. ( 1896 ). Über die im Brennereiprozess bei der Bereitung der Kunsthefe auftretende spontane Milchsäuregärung. . Zentralbl Bakteriol II Abt 2, 281285.
    [Google Scholar]
  16. Lowe T. M., Eddy S. R. ( 1997 ). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. . Nucleic Acids Res 25, 955964.[PubMed] [CrossRef]
    [Google Scholar]
  17. Naser S. M., Dawyndt P., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Vancanneyt M., Swings J. ( 2007 ). Identification of lactobacilli by pheS and rpoA gene sequence analyses. . Int J Syst Evol Microbiol 57, 27772789. [View Article] [PubMed]
    [Google Scholar]
  18. Orla-Jensen S. ( 1919 ). The Lactic Acid Bacteria. Copenhagen:: Høst and Son;. [View Article]
    [Google Scholar]
  19. Rosselló-Mora R., Amann R. ( 2001 ). The species concept for prokaryotes. . FEMS Microbiol Rev 25, 3967. [View Article] [PubMed]
    [Google Scholar]
  20. Sawadogo-Lingani H., Lei V., Diawara B., Nielsen D. S., Møller P. L., Traoré A. S., Jakobsen M. ( 2007 ). The biodiversity of predominant lactic acid bacteria in dolo and pito wort for the production of sorghum beer. . J Appl Microbiol 103, 765777. [View Article] [PubMed]
    [Google Scholar]
  21. Schumann P. ( 2011 ). Peptidoglycan structure. . In Taxonomy of Prokaryotes, Methods in Microbiology, vol. 38, pp. 101129. Edited by Rainey F., Oren A. . London:: Academic Press;. [View Article]
    [Google Scholar]
  22. Skermann V. B. D., McGowan V., Sneath P. H. A. ( 1980 ). Approved lists of bacterial names. . Int J Syst Bacteriol 30, 225420. [View Article]
    [Google Scholar]
  23. Tanigawa K., Watanabe K. ( 2011 ). Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii . . Microbiology 157, 727738. [View Article] [PubMed]
    [Google Scholar]
  24. Torriani S., Zapparoli G., Dellaglio F. ( 1999 ). Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis . . Appl Environ Microbiol 65, 43514356.[PubMed]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  26. Weiss N., Schillinger U., Kandler O. ( 1983 ). Lactobacillus lactis, Lactobacillus leichmannii and Lactobacillus bulgaricus, subjective synonyms of Lactobacillus delbrueckii, and description of Lactobacillus delbrueckii subsp. lactis comb. nov. and Lactobacillus delbrueckii subsp. bulgaricus comb. nov.. Syst Appl Microbiol 4, 552557. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048769-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048769-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed