1887

Abstract

A Gram-staining-negative, non-endospore-forming, yellow-pigmented strain (E89) was isolated from the skin of the medical leech obtained from a leech farm located in Biebertal, Germany. 16S rRNA gene sequencing analysis showed that the isolate was grouped in the genus . Strain E89 was most closely related to LM-09-Fp (98.2 %), CJ7 (98.1 %), and 631-08 (98.1 %). 16S rRNA gene sequence similarities to all other species of the genus were ≤97.4 %. A menaquinone of the type MK-6 was found to be the predominant respiratory quinone and the polar lipid profile consisted of the major compounds phosphatidylethanolamine, phosphatidylserine, two unidentified aminolipids, one unknown phospholipid and two unknown lipids. The fatty acid profile was composed of iso-C, C, summed feature 3 (Cω7 and/or iso-C 2-OH) found in major amounts and several hydroxylated fatty acids in smaller amounts, among them iso-C 3-OH and iso-C 3-OH. All these data support the allocation of the isolate in the genus . Physiological/biochemical characterization and DNA–DNA hybridizations with the type strains of the most closely related species allowed a clear phenotypic and genotypic differentiation of the strain. Based on these data, strain E89 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is E89 ( = DSM 25795 = LMG 26922 = CIP 110374).

Erratum
This article contains a correction applying to the following content:
sp. nov., isolated from the skin of the medical leech
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048736-0
2013-08-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/2841.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048736-0&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Bowman J. P.. ( 2006;). The genus Flavobacterium. . In The Prokaryotes. A Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 481–531. Edited by Dworkin M., Flakow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  2. Bernardet J. F., Bowman J. P.. ( 2011;). Genus I. Flavobacterium. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 112–154. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  3. Bernardet J. F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P.. ( 1996;). Cutting a Gordian Knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). . Int J Syst Evol Microbiol 46:, 128–148. [CrossRef]
    [Google Scholar]
  4. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  5. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  7. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  8. Cousin S., Päuker O., Stackebrandt E.. ( 2007;). Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. . Int J Syst Evol Microbiol 57:, 243–249. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: An approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Glaeser S. P., Galatis H., Martin K., Kämpfer P.. ( 2012a;). Luteolibacter cuticulihirudinis sp. nov., isolated from Hirudo medicinalis. . Antonie van Leeuwenhoek 102:, 319–324. [CrossRef][PubMed]
    [Google Scholar]
  12. Glaeser S. P., Galatis H., Martin K., Kämpfer P.. ( 2012b;). Castellaniella hirudinis sp. nov., isolated from the skin of Hirudo verbana.. Int J Syst Evol Microbiol 63:, 521–525. [CrossRef][PubMed]
    [Google Scholar]
  13. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. ( 1996;). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef][PubMed]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of the protein molecules. . In Mammalian protein metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  15. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  16. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  17. Kämpfer P., Busse H. J., Longaric I., Rosselló-Móra R., Galatis H., Lodders N.. ( 2012a;). Pseudarcicella hirudinis gen. nov., sp. nov., isolated from the skin of the medical leech Hirudo medicinalis.. Int J Syst Evol Microbiol 62:, 2247–2251. [CrossRef][PubMed]
    [Google Scholar]
  18. Kämpfer P., Lodders N., Martin K., Avendaño-Herrera R.. ( 2012b;). Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. . Int J Syst Evol Microbiol 62:, 1402–1408. [CrossRef][PubMed]
    [Google Scholar]
  19. Kim J.-H., Kim K.-Y., Cha C.-J.. ( 2009;). Flavobacterium chungangense sp. nov., isolated from a freshwater lake. . Int J Syst Evol Microbiol 59:, 1754–1758. [CrossRef][PubMed]
    [Google Scholar]
  20. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  21. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  22. Nogi Y., Soda K., Oikawa T.. ( 2005;). Flavobacterium frigidimaris sp. nov., isolated from Antarctic seawater. . Syst Appl Microbiol 28:, 310–315. [CrossRef][PubMed]
    [Google Scholar]
  23. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  24. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  25. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  26. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  27. Zamora L., Fernández-Garayzábal J. F., Svensson-Stadler L. A., Palacios M. A., Domínguez L., Moore E. R. B., Vela A. I.. ( 2012;). Flavobacterium oncorhynchi sp. nov., a new species isolated from rainbow trout (Oncorhynchus mykiss). . Syst Appl Microbiol 35:, 86–91. [CrossRef][PubMed]
    [Google Scholar]
  28. Zhang D .C., Wang H. X., Liu H. C., Dong X. Z., Zhou P. J.. ( 2006;). Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. . Int J Syst Evol Microbiol 56:, 2921–2925. [CrossRef][PubMed]
    [Google Scholar]
  29. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048736-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048736-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error