1887

Abstract

Two stalked, aerobic, catalase- and oxidase-positive rod-shaped isolates, VKM B-1508 ( = CB 258) and FWC47, were analysed using a polyphasic approach. While the morphology and the 16S rRNA gene sequence of strain VKM B-1508 were 100 % identical to the ones of DSM 4733, the morphology of FWC47 was different, and the closest recognized species were S213 ( = DSM 17107) and DSM 4733 with 97.2 % and 97.0 % 16S rRNA gene sequence similarity, respectively. DNA–DNA hybridization studies supported the differentiation of strain FWC47 from and . Strain FWC47 grew optimally at 28–30 °C, and pH 6.0–8.0. The major respiratory quinone was Q10 and the major polyamine was -homospermidine. The major fatty acids were Cω6 and Cω7 and C 2-OH was the major 2-hydroxy fatty acid. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethylamine and unidentified sphingoglycolipids. The G+C content of the genomic DNA of strain FWC47 was 67.1 mol%. Strain FWC47 differed from by its ability to assimilate -alanine, maltose and sucrose, by the presence of β-galactosidase and α-chymotrypsin, and the lack of valine arylamidase and β-glucosidase activities. Contrary to , FWC47 did not reduce nitrate and could not use fructose, acetate and -acetyl-glusosamine. In the genus , the dimorphic life cycle involving a prosthecate sessile and a flagellated swarmer cell was hitherto only known from . Therefore, strain FWC47 represents an additional distinct prosthecate species in this genus for which the name is proposed. The type strain is FWC47 ( = LMG 27141 = CCUG 62982).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048678-0
2013-09-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3214.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048678-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R. , Meyer H. , Lindholst S. , Vancanneyt M. , Smit J. . ( 1997; ). Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato, Brevundimonas and Hyphomonas. . Syst Appl Microbiol 20:, 522–539. [CrossRef]
    [Google Scholar]
  2. Abraham W.-R. , Strömpl C. , Meyer H. , Lindholst S. , Moore E. R. B. , Christ R. , Vancanneyt M. , Tindall B. J. , Bennasar A. . & other authors ( 1999; ). Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . . Int J Syst Bacteriol 49:, 1053–1073. [CrossRef] [PubMed]
    [Google Scholar]
  3. Busse H. J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997; ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  4. Busse H. J. , Kämpfer P. , Denner E. B. . ( 1999; ). Chemotaxonomic characterisation of Sphingomonas . . J Ind Microbiol Biotechnol 23:, 242–251. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen H. , Jogler M. , Rohde M. , Klenk H. P. , Busse H. J. , Tindall B. J. , Spröer C. , Overmann J. . ( 2012; ). Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. . Int J Syst Evol Microbiol 62:, 2835–2843. [CrossRef] [PubMed]
    [Google Scholar]
  7. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gutell R. R. , Weiser B. , Woese C. R. , Noller H. F. . ( 1985; ). Comparative anatomy of 16-S-like ribosomal RNA. . Prog Nucleic Acid Res Mol Biol 32:, 155–216. [CrossRef] [PubMed]
    [Google Scholar]
  9. Häkkinen M. R. . ( 2011; ). Polyamine analysis by LC-MS. . Methods Mol Biol 720:, 505–518. [CrossRef] [PubMed]
    [Google Scholar]
  10. Henrici A. T. , Johnson D. E. . ( 1935; ). Studies on freshwater bacteria. II. Stalked bacteria, a new order of schizomycetes. . J Bacteriol 30:, 61–93.[PubMed]
    [Google Scholar]
  11. Huß V. A. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  12. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. H. . . New York:: Academic Press;.
    [Google Scholar]
  13. Kanz C. , Aldebert P. , Althorpe N. , Baker W. , Baldwin A. , Bates K. , Browne P. , van den Broek A. , Castro M. . & other authors ( 2005; ). The EMBL nucleotide sequence database. . Nucleic Acids Res 33: (Database issue), D29–D33. [CrossRef] [PubMed]
    [Google Scholar]
  14. Li Y. , Kawamura Y. , Fujiwara N. , Naka T. , Liu H. , Huang X. , Kobayashi K. , Ezaki T. . ( 2004; ). Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. . Int J Syst Evol Microbiol 54:, 819–825. [CrossRef] [PubMed]
    [Google Scholar]
  15. Loeffler F. . ( 1890; ). Weitere Untersuchungen über die Beizung und Färbung der Geisseln bei den Bakterien. . Centralbl Bakteriol Parasitenkd 7:, 625–639 (in German).
    [Google Scholar]
  16. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  17. Poindexter J. S. . ( 1964; ). Biological properties and classification of the Caulobacter group. . Bacteriol Rev 28:, 231–295.[PubMed]
    [Google Scholar]
  18. Pott J. , Basler T. , Duerr C. U. , Rohde M. , Goethe R. , Hornef M. W. . ( 2009; ). Internalization-dependent recognition of Mycobacterium avium ssp. paratuberculosis by intestinal epithelial cells. . Cell Microbiol 11:, 1802–1815. [CrossRef] [PubMed]
    [Google Scholar]
  19. Rüger H.-J. , Krambeck H.-J. . ( 1994; ). Evaluation of the BIOLOG substrate metabolism system for classification of marine bacteria. . Syst Appl Microbiol 17:, 281–288. [CrossRef]
    [Google Scholar]
  20. Stahl D. A. , Key R. , Flesher B. , Smit J. . ( 1992; ). The phylogeny of marine and freshwater caulobacters reflects their habitat. . J Bacteriol 174:, 2193–2198.[PubMed]
    [Google Scholar]
  21. Takeuchi M. , Kawai F. , Shimada Y. , Yokota A. . ( 1993; ). Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov., and Sphingomonas terrae sp. nov.. Syst Appl Microbiol 16:, 227–238. [CrossRef]
    [Google Scholar]
  22. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  23. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  24. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  25. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  26. Yabuuchi E. I. , Yano I. , Oyaizu H. , Hashimoto Y. , Ezaki T. , Yamamoto H. . ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . . Microbiol Immunol 34:, 99–119.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048678-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048678-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error