1887

Abstract

Strain VNs100, a novel mesophilic, anaerobic, rod-coccoid-shaped bacterium, having a sheath-like outer structure (toga), was isolated from a water sample collected in the area of an underground gas storage aquifer. It was non-motile with cells appearing singly (2–4 µm long×1–2 µm wide), in pairs or as long chains and stained Gram-negative. Strain VNs100 was heterotrophic, able to use arabinose, cellobiose, fructose, galactose, glucose, lactose, lactate, mannose, maltose, raffinose, ribose, sucrose and xylose as energy sources only in the presence of elemental sulfur as terminal electron acceptor. Acetate, CO and sulfide were the end products of sugar metabolism. Hydrogen was not detected. Elemental sulfur, but not thiosulfate, sulfate or sulfite, were reduced to sulfide. Strain VNs100 grew at temperatures between 30 and 50 °C (optimum 45 °C), at pH values between 6.2 and 7.9 (optimum 7.3–7.5) and at NaCl concentrations between 0 and 15 g l (optimum 2 g l). The DNA G+C content was 47.5 mol%. The main cellular fatty acid was C. Phylogenetic analysis of the small subunit rRNA gene sequence indicated that strain VNs100 had as its closest relatives ‘ ’ (97.1 % similarity) and (similarity of 97.1 % and 97.7 % with each of its two genes, respectively) within the order . Hybridization between strain VNS100 and ‘’ and between strain VNS100 and showed 12.9 % and 20.6 % relatedness, respectively. Based on phenotypic, phylogenetic and taxonomic characteristics, strain VNs100 is proposed as a representative of a novel species of the genus in the family , order . The name sp. nov. is proposed. The type strain is VNs100 ( = DSM 25546 = JCM 18154).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.047993-0
2013-08-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/3003.html?itemId=/content/journal/ijsem/10.1099/ijs.0.047993-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Basso O., Lascourrèges J. F., Jarry M., Magot M.. ( 2005;). The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. . Environ Microbiol 7:, 13–21. [CrossRef][PubMed]
    [Google Scholar]
  3. Basso O., Lascourrèges J. F., Le Borgne F., Le Goff C., Magot M.. ( 2009;). Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer. . Res Microbiol 160:, 107–116. [CrossRef][PubMed]
    [Google Scholar]
  4. Ben Hania W., Ghodbane R., Postec A., Brochier-Armanet C., Hamdi M., Fardeau M. L., Ollivier B.. ( 2011;). Cultivation of the first mesophilic representative (“mesotoga”) within the order Thermotogales. . Syst Appl Microbiol 34:, 581–585. [CrossRef][PubMed]
    [Google Scholar]
  5. Berlendis S., Lascourreges J.-F., Schraauwers B., Sivadon P., Magot M.. ( 2010;). Anaerobic biodegradation of BTEX by original bacterial communities from an underground gas storage aquifer. . Environ Sci Technol 44:, 3621–3628. [CrossRef][PubMed]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  7. Chouari R., Le Paslier D., Daegelen P., Ginestet P., Weissenbach J., Sghir A.. ( 2005;). Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. . Environ Microbiol 7:, 1104–1115. [CrossRef][PubMed]
    [Google Scholar]
  8. Cord-Ruwisch R.. ( 1985;). A quick method for determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. . J Microbiol Methods 4:, 33–36. [CrossRef]
    [Google Scholar]
  9. DiPippo J. L., Nesbø C. L., Dahle H., Doolittle W. F., Birkland N. K., Noll K. M.. ( 2009;). Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. . Int J Syst Evol Microbiol 59:, 2991–3000. [CrossRef][PubMed]
    [Google Scholar]
  10. Dollhopf S. L., Hashsham S. A., Tiedje J. M.. ( 2001;). Interpreting 16S rDNA T-RFLP data: application of self-organizing maps and principal component analysis to describe community dynamics and convergence. . Microb Ecol 42:, 495–505. [CrossRef][PubMed]
    [Google Scholar]
  11. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  12. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F. S., Garcia J.-L.. ( 1997;). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. . Int J Syst Bacteriol 47:, 1013–1019. [CrossRef][PubMed]
    [Google Scholar]
  13. Fardeau M.-L., Magot M., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B.. ( 2000;). Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. . Int J Syst Evol Microbiol 50:, 2141–2149. [CrossRef][PubMed]
    [Google Scholar]
  14. Hungate R. E.. ( 1969;). A roll tube method for the cultivation of strict anaerobes. . Methods Microbiol 3B:, 117–132. [CrossRef]
    [Google Scholar]
  15. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and desoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  17. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  18. Miller T. L., Wolin M. J.. ( 1974;). A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. . Appl Microbiol 27:, 985–987.[PubMed]
    [Google Scholar]
  19. Nesbø C. L., Dlutek M., Zhaxybayeva O., Doolittle W. F.. ( 2006;). Evidence for existence of “mesotogas,” members of the order Thermotogales adapted to low-temperature environments. . Appl Environ Microbiol 72:, 5061–5068. [CrossRef][PubMed]
    [Google Scholar]
  20. Nesbø C. L., Bradnan D. M., Adebusuyi A., Dlutek M., Petrus A. K., Foght J., Doolittle W. F., Noll K. M.. ( 2012;). Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. . Extremophiles 16:, 387–393. [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  22. Yan T., LaPara T. M., Novak P. J.. ( 2006;). The reductive dechlorination of 2,3,4,5-tetrachlorobiphenyl in three different sediment cultures: evidence for the involvement of phylogenetically similar Dehalococcoides-like bacterial populations. . FEMS Microbiol Ecol 55:, 248–261. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.047993-0
Loading
/content/journal/ijsem/10.1099/ijs.0.047993-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error