1887

Abstract

Two Gram-stain-negative, non-fermentative bacterial strains, designated 11-0202 and 11-0607, were isolated from soil in South Korea, and four others, LUH 13522, LUH 8638, LUH 10268 and LUH 10288, were isolated from a beet field in Germany, soil in the Netherlands, and sediment of integrated fish farms in Malaysia and Thailand, respectively. Based on 16S rRNA, and gene sequences, they are considered to represent a novel species of the genus . Their 16S rRNA gene sequences showed greatest pairwise similarity to NIPH 838 (97.9–98.4 %). They shared highest and gene sequence similarity with DSM 6963 and 4B02 (85.4–87.6 and 78.1–82.7 %, respectively). Strain 11-0202 displayed low DNA–DNA reassociation values (<40 %) with the most closely related species of the genus . The six strains utilized azelate, 2,3-butanediol, ethanol and -lactate as sole carbon sources. Cellular fatty acid analyses showed similarities to profiles of related species of the genus : summed feature 3 (Cω7, Cω6; 24.3–27.2 %), Cω9 (19.9–22.1 %), C (15.2–22.0 %) and C (9.2–14.2 %). On the basis of the current findings, it is concluded that the six strains represent a novel species, for which the name sp. nov. is proposed. The type strain is 11-0202 ( = KCTC 32033 = JCM 18512).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.047969-0
2013-12-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4402.html?itemId=/content/journal/ijsem/10.1099/ijs.0.047969-0&mimeType=html&fmt=ahah

References

  1. Al Masalma M., Armougom F., Scheld W. M., Dufour H., Roche P.-H., Drancourt M., Raoult D.. ( 2009;). The expansion of the microbiological spectrum of brain abscesses with use of multiple 16S ribosomal DNA sequencing. . Clin Infect Dis 48:, 1169–1178. [CrossRef][PubMed]
    [Google Scholar]
  2. Anandham R., Weon H.-Y., Kim S.-J., Kim Y.-S., Kim B.-Y., Kwon S.-W.. ( 2010;). Acinetobacter brisouii sp. nov., isolated from a wetland in Korea. . J Microbiol 48:, 36–39. [CrossRef][PubMed]
    [Google Scholar]
  3. Choi J. Y., Kim Y., Ko E. A., Park Y. K., Jheong W.-H., Ko G., Ko K. S.. ( 2012;). Acinetobacter species isolates from a range of environments: species survey and observations of antimicrobial resistance. . Diagn Microbiol Infect Dis 74:, 177–180. [CrossRef][PubMed]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  5. Dijkshoorn L., Nemec A., Seifert H.. ( 2007;). An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. . Nat Rev Microbiol 5:, 939–951. [CrossRef][PubMed]
    [Google Scholar]
  6. Gilad J., Carmeli Y.. ( 2008;). Treatment options for multidrug-resistant Acinetobacter species. . Drugs 68:, 165–189. [CrossRef][PubMed]
    [Google Scholar]
  7. Gundi V. A. K. B., Dijkshoorn L., Burignat S., Raoult D., La Scola B.. ( 2009;). Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species. . Microbiology 155:, 2333–2341. [CrossRef][PubMed]
    [Google Scholar]
  8. La Scola B., Gundi V. A., Khamis A., Raoult D.. ( 2006;). Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. . J Clin Microbiol 44:, 827–832. [CrossRef][PubMed]
    [Google Scholar]
  9. Lee J.-Y., Ko K. S.. ( 2012;). Antimicrobial resistance and clones of Acinetobacter species and Pseudomonas aeruginosa. . J Bacteriol Virol 42:, 1–8. [CrossRef]
    [Google Scholar]
  10. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  11. Narciso-da-Rocha C., Vaz-Moreira I., Svensson-Stadler L., Moore E. R. B., Manaia C. M.. ( 2013;). Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. . Appl Microbiol Biotechnol 97:, 329–340. [CrossRef][PubMed]
    [Google Scholar]
  12. Nemec A., Musílek M., Maixnerová M., De Baere T., van der Reijden T. J., Vaneechoutte M., Dijkshoorn L.. ( 2009;). Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. . Int J Syst Evol Microbiol 59:, 118–124. [CrossRef][PubMed]
    [Google Scholar]
  13. Nemec A., Musílek M., Šedo O., De Baere T., Maixnerová M., van der Reijden T. J. K., Zdráhal Z., Vaneechoutte M., Dijkshoorn L.. ( 2010;). Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. . Int J Syst Evol Microbiol 60:, 896–903. [CrossRef][PubMed]
    [Google Scholar]
  14. Nemec A., Krizova L., Maixnerova M., van der Reijden T. J. K., Deschaght P., Passet V., Vaneechoutte M., Brisse S., Dijkshoorn L.. ( 2011;). Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). . Res Microbiol 162:, 393–404. [CrossRef][PubMed]
    [Google Scholar]
  15. Peleg A. Y., Seifert H., Paterson D. L.. ( 2008;). Acinetobacter baumannii: emergence of a successful pathogen. . Clin Microbiol Rev 21:, 538–582. [CrossRef][PubMed]
    [Google Scholar]
  16. Tjernberg I., Lindh E., Ursing J.. ( 1989;). A quantitative bacterial dot method for DND-DNA hybridization and its correlation to the hydroxyapatite method. . Curr Microbiol 18:, 77–81. [CrossRef]
    [Google Scholar]
  17. Vaz-Moreira I., Novo A., Hantsis-Zacharov E., Lopes A. R., Gomila M., Nunes O. C., Manaia C. M., Halpern M.. ( 2011;). Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewater. . Int J Syst Evol Microbiol 61:, 2837–2843. [CrossRef][PubMed]
    [Google Scholar]
  18. Yamamoto S., Bouvet P. J. M., Harayama S.. ( 1999;). Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization. . Int J Syst Bacteriol 49:, 87–95. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.047969-0
Loading
/content/journal/ijsem/10.1099/ijs.0.047969-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error