1887

Abstract

Cauliform bacteria are prosthecate bacteria often specialized for oligotrophic environments. A polyphasic approach, comprising 16S rRNA gene sequencing, lipid analysis and salt tolerance characterizations, was used to clarify the taxonomy of one isolate, strain MCS 33, obtained from above the hot water plume of a deep-sea hydrothermal vent near Vancouver island, Canada. Cells contained no detectable phospholipids or sulpholipids, but did contain 1,2-di-O-acyl-3-O-α--glucopyranosylglycerol, 1,2-di-O-acyl-3-O-α--glucopyranuronosylglycerol and the novel lipid 1,2-di-O-acyl-3-[O-α--glucopyranuronosyl]glycerol-6′--glycine. It is assumed that the various glucoronosyl lipids are replacing, at least partially, the phospholipids in their various tasks in the cell cycle. The GC content of the genomic DNA of strain MCS 33 was 62.8 mol%, and Q10 was the predominant respiratory ubiquinone. The 16S rRNA gene sequence of this chemoheterotrophic, aerobic, moderately halophilic strain showed only a low similarity of 94.4 % to that of C116-18, and both strains also differed based on their lipids. Although the novel strain was isolated from seawater sampled near a hydrothermal vent, its optimum temperature for growth was 30 °C. The main cellular fatty acids were Cω7, C and the unknown fatty acid ECL 11.798, and the main hydroxy fatty acid was C 3-OH. The strain is proposed to represent a novel species of a new genus, gen. nov., sp. nov. The type strain of the type species is MCS 33 ( = LMG 27140 = CCUG 62981).

Funding
This study was supported by the:
  • German Federal Ministry for Science, Education and Research (Award 0319433C)
  • European Union
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.047894-0
2013-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2207.html?itemId=/content/journal/ijsem/10.1099/ijs.0.047894-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Meyer H., Lindholst S., Vancanneyt M., Smit J. ( 1997 ). Phospho- and sulfolipids as biomarkers of Caulobacter, Brevundimonas and Hyphomonas . . Syst Appl Microbiol 20, 522539. [View Article]
    [Google Scholar]
  2. Abraham W.-R., Strömpl C., Meyer H., Lindholst S., Moore E. R. B., Bennasar A., Christ R., Vancanneyt M., Tindall B. et al. ( 1999 ). Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . . Int J Syst Bacteriol 49, 10531073. [View Article] [PubMed]
    [Google Scholar]
  3. Abraham W.-R., Strömpl C., Vancanneyt M., Bennasar A., Swings J., Lünsdorf H., Smit J., Moore E. R. B. ( 2004 ). Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids. . Int J Syst Evol Microbiol 54, 12271234. [View Article] [PubMed]
    [Google Scholar]
  4. Abraham W.-R., Estrela A. B., Nikitin D. I., Smit J., Vancanneyt M. ( 2010 ). Brevundimonas halotolerans sp. nov., Brevundimonas poindexterae sp. nov. and Brevundimonas staleyi sp. nov., prosthecate bacteria from aquatic habitats. . Int J Syst Evol Microbiol 60, 18371843. [View Article] [PubMed]
    [Google Scholar]
  5. Baross J. A., Lilley M. D., Gordon L. I. ( 1982 ). Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria?. Nature 298, 366368. [View Article]
    [Google Scholar]
  6. Bligh E. G., Dyer W. J. ( 1959 ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37, 911917. [View Article] [PubMed]
    [Google Scholar]
  7. Chen M.-H., Sheu S.-Y., Chen C. A., Wang J.-T., Chen W.-M. ( 2012 ). Oceanicaulis stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata . . Int J Syst Evol Microbiol 62, 22412246. [View Article] [PubMed]
    [Google Scholar]
  8. De Siervo A. J. ( 1985 ). High levels of glycolipid and low levels of phospholipid in a marine caulobacter. . J Bacteriol 164, 684688.[PubMed]
    [Google Scholar]
  9. Dowhan W. ( 1997 ). Molecular basis for membrane phospholipid diversity: why are there so many lipids?. Annu Rev Biochem 66, 199232. [View Article] [PubMed]
    [Google Scholar]
  10. Gehrke C. W., McCune R. A., Gama-Sosa M. A., Ehrlich M., Kuo K. C. ( 1984 ). Quantitative reversed-phase high-performance liquid chromatography of major and modified nucleosides in DNA. . J Chromatogr A 301, 199219. [View Article] [PubMed]
    [Google Scholar]
  11. Henrici A. T., Johnson D. E. ( 1935 ). Stalked bacteria, a new order of Schizomycetes . . J Bacteriol 30, 6193.[PubMed]
    [Google Scholar]
  12. Jannasch H. W., Taylor C. D. ( 1984 ). Deep-sea microbiology. . Annu Rev Microbiol 38, 487514. [View Article] [PubMed]
    [Google Scholar]
  13. Jensen N. J., Tomer K. B., Gross M. L. ( 1987 ). FAB MSMS for phosphatidylinositol, -glycerol, -ethanolamine and other complex phospholipids. . Lipids 7, 480489. [View Article]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. ( 1969 ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21132. Edited by Munro H. N. . New York:: Academic Press;.
    [Google Scholar]
  15. Karsch-Mizrachi I., Nakamura Y., Cochrane G. International Nucleotide Sequence Database Collaboration ( 2012 ). The international nucleotide sequence database collaboration. . Nucleic Acids Res 40 (Database issue), D33D37. [View Article] [PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  17. Minnikin D. E., Abdolrahimzadeh H., Baddiley J. ( 1974 ). Replacement of acidic phosphates by acidic glycolipids in Pseudomonas diminuta . . Nature 249, 268269. [View Article] [PubMed]
    [Google Scholar]
  18. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athayle M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  19. Murphy R. C., Harrison K. A. ( 1994 ). Fast atom bombardment mass spectrometry of phospholipids. . Mass Spectrom Rev 13, 5775. [View Article]
    [Google Scholar]
  20. Osterhout G. J., Shull V. H., Dick J. D. ( 1991 ). Identification of clinical isolates of gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. . J Clin Microbiol 29, 18221830.[PubMed]
    [Google Scholar]
  21. Poindexter J. S. ( 1964 ). Biological properties and classification of the Caulobacter group. . Bacteriol Rev 28, 231295.[PubMed]
    [Google Scholar]
  22. Poindexter J. S. ( 1981 ). Oligotrophy. Fast and famine existence. . In Microbial Ecology, vol. 5, pp. 6389. Edited by Alexander M. . New York:: Plenum Publishing Corp;. [View Article]
    [Google Scholar]
  23. Segers P., Vancanneyt M., Pot B., Torck U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. ( 1994 ). Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. . Int J Syst Bacteriol 44, 499510. [View Article] [PubMed]
    [Google Scholar]
  24. Stahl D. A., Key R., Flesher B., Smit J. ( 1992 ). The phylogeny of marine and freshwater caulobacters reflects their habitat. . J Bacteriol 174, 21932198.[PubMed]
    [Google Scholar]
  25. Staley J. T. ( 1968 ). Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. . J Bacteriol 95, 19211942.[PubMed]
    [Google Scholar]
  26. Strömpl C., Hold G. L., Lünsdorf H., Graham J., Gallacher S., Abraham W.-R., Moore E. R. B., Timmis K. N. ( 2003 ). Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. . Int J Syst Evol Microbiol 53, 19011906. [View Article] [PubMed]
    [Google Scholar]
  27. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  30. Van Mooy B. A., Fredricks H. F., Pedler B. E., Dyhrman S. T., Karl D. M., Koblízek M., Lomas M. W., Mincer T. J., Moore L. R. et al. ( 2009 ). Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. . Nature 458, 6972. [View Article] [PubMed]
    [Google Scholar]
  31. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. ( 1996 ). Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. . Syst Appl Microbiol 19, 528540. [View Article]
    [Google Scholar]
  32. Witte U., Wenzhöfer F., Sommer S., Boetius A., Heinz P., Aberle N., Sand M., Cremer A., Abraham W.-R. et al. ( 2003 ). In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. . Nature 424, 763766. [View Article] [PubMed]
    [Google Scholar]
  33. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. W., Abraham W.-R., Lünsdorf H., Timmis K. N. ( 1998 ). Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. . Int J Syst Bacteriol 48, 339348. [View Article] [PubMed]
    [Google Scholar]
  34. Yurkov V., Beatty J. T. ( 1998 ). Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. . Appl Environ Microbiol 64, 337341.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.047894-0
Loading
/content/journal/ijsem/10.1099/ijs.0.047894-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error