1887

Abstract

A Gram-stain-negative, rod-shaped, strictly aerobic, flagellated and non-spore-forming marine bacterium designated strain CC-AMO-30B was isolated from coastal surface seawater, Taiwan. Strain CC-AMO-30B synthesized astaxanthin [40 µg (g dry weight)] and formed reddish-orange-coloured colonies on marine agar (Difco 2216). The strain showed highest pairwise 16S rRNA gene sequence similarity to CC-TBT-3 (96.4 %) followed by other members of the family (<94 %) and established a discrete phyletic lineage associated with the former. The polar lipid profile constituted a remarkable number of unidentified glycolipids (GL1–8), in addition to diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and two unidentified lipids (L1–2). The major fatty acids (>5 % of total fatty acids) were Cω7/Cω6 (summed feature 8), Cω7/Cω6 (summed feature 3), C 2-OH, methyl Cω7, Cω6 and C. DNA G+C content was 70.6 %; major respiratory quinone was ubiquinone Q-10; predominant polyamine was the triamine -homospermidine. Chemotaxonomic evidence including characteristic glycolipid profile, presence of significant amounts of C 2-OH and absence of typical hydroxylated fatty acids such as C 2-OH, C 2-OH and C 2-OH in considerable amounts, accompanied by phylogenetic distinctiveness and several other phenotypic features support the classification of strain CC-AMO-30B as a representative of a novel species within the genus for which the name sp. nov. is proposed; the type strain is CC-AMO-30B ( = JCM 18551 = BCRC 80465).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.047704-0
2013-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3415.html?itemId=/content/journal/ijsem/10.1099/ijs.0.047704-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Asker D. , Beppu T. , Ueda K. . ( 2007; ). Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. . FEMS Microbiol Lett 273:, 140–148. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bhosale P. , Bernstein P. S. . ( 2005; ). Microbial xanthophylls. . Appl Microbiol Biotechnol 68:, 445–455. [CrossRef] [PubMed]
    [Google Scholar]
  4. Busse H. J. , Kämpfer P. , Denner E. B. M. . ( 1999; ). Chemotaxonomic characterisation of Sphingomonas . . J Ind Microbiol Biotechnol 23:, 242–251. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen C. , Zheng Q. , Wang Y. N. , Yan X. J. , Hao L. K. , Du X. , Jiao N. . ( 2010; ). Stakelama pacifica gen. nov., sp. nov., a new member of the family Sphingomonadaceae isolated from the Pacific Ocean. . Int J Syst Evol Microbiol 60:, 2857–2861. [CrossRef] [PubMed]
    [Google Scholar]
  6. Collins M. D. . ( 1985; ). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  7. De Ley J. , Swings J. . ( 1976; ). Phenotypic description, numerical analysis and a proposal for an improved taxonomy and nomenclature of the genus Zymomonas Kluyver and van Niel 1936. . Int J Syst Bacteriol 26:, 146–157. [CrossRef]
    [Google Scholar]
  8. Embley T. M. , Wait R. . ( 1994; ). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M. , O’Donnell A. G. . . Chichester:: Wiley;.
    [Google Scholar]
  9. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  10. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  11. Fitch W. M. . ( 1971; ). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20:, 406–416. [CrossRef]
    [Google Scholar]
  12. GCG ( 1995; ). Wisconsin Package Version 8.1 Program Manual. Madison, WI:: Genetics Computer Group;.
    [Google Scholar]
  13. Geueke B. , Busse H. J. , Fleischmann T. , Kämpfer P. , Kohler H. P. . ( 2007; ). Description of Sphingosinicella xenopeptidilytica sp. nov., a beta-peptide-degrading species, and emended descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans . . Int J Syst Evol Microbiol 57:, 107–113. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gich F. , Overmann J. . ( 2006; ). Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. . Int J Syst Evol Microbiol 56:, 847–854. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hameed A. , Shahina M. , Lin S. Y. , Sridhar K. R. , Young L. S. , Lee M. R. , Chen W. M. , Chou J. H. , Young C. C. . ( 2012; ). Siansivirga zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing member of the family Flavobacteriaceae isolated from coastal seawater of Taiwan. . FEMS Microbiol Lett 333:, 37–45. [CrossRef] [PubMed]
    [Google Scholar]
  16. Heiner C. R. , Hunkapiller K. L. , Chen S. M. , Glass J. I. , Chen E. Y. . ( 1998; ). Sequencing multimegabase-template DNA with BigDye terminator chemistry. . Genome Res 8:, 557–561.[PubMed]
    [Google Scholar]
  17. Iizuka H. , Nishimura Y. . ( 1969; ). Microbiological studies on petroleum and natural gas X. Carotenoid pigments of hydrocarbon-utilizing bacteria. . J Gen Appl Microbiol 15:, 127–134. [CrossRef]
    [Google Scholar]
  18. Jogler M. , Chen H. , Simon J. , Rohde M. , Busse H.-J. , Klenk H.-P. , Tindall B. J. , Overmann J. . ( 2012; ). Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. . Int J Syst Evol Microbiol 63:, 1342–1349. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  20. Kämpfer P. , Arun A. B. , Young C.-C. , Busse H. J. , Kassmannhuber J. , Rosselló-Móra R. , Geueke B. , Rekha P. D. , Chen W.-M. . ( 2012; ). Sphingomicrobium lutaoense gen. nov., sp. nov., isolated from a coastal hot spring. . Int J Syst Evol Microbiol 62:, 1326–1330. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kosako Y. , Yabuuchi E. , Naka T. , Fujiwara N. , Kobayashi K. . ( 2000; ). Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. . Microbiol Immunol 44:, 563–575.[PubMed] [CrossRef]
    [Google Scholar]
  24. Lee J. H. , Kim Y. S. , Choi T. J. , Lee W. J. , Kim Y. T. . ( 2004; ). Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. . Int J Syst Evol Microbiol 54:, 1699–1702. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lorenz R. T. , Cysewski G. R. . ( 2000; ). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. . Trends Biotechnol 18:, 160–167. [CrossRef] [PubMed]
    [Google Scholar]
  26. Maruyama T. , Park H. D. , Ozawa K. , Tanaka Y. , Sumino T. , Hamana K. , Hiraishi A. , Kato K. . ( 2006; ). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. . Int J Syst Evol Microbiol 56:, 85–89. [CrossRef] [PubMed]
    [Google Scholar]
  27. Matsumoto M. , Iwama D. , Arakaki A. , Tanaka A. , Tanaka T. , Miyashita H. , Matsunaga T. . ( 2011; ). Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. . Int J Syst Evol Microbiol 61:, 2956–2961. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  29. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  30. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  32. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  33. Scherer P. , Kneifel H. . ( 1983; ). Distribution of polyamines in methanogenic bacteria. . J Bacteriol 154:, 1315–1322.[PubMed]
    [Google Scholar]
  34. Sly L. I. , Cahill M. M. . ( 1997; ). Transfer of Blastobacter natatorius (Sly 1985) to the genus Blastomonas gen. nov. as Blastomonas natatoria comb. nov.. Int J Syst Bacteriol 47:, 566–568. [CrossRef] [PubMed]
    [Google Scholar]
  35. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  36. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  37. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  38. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  39. Tindall B. J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  40. Tsubokura A. , Yoneda H. , Mizuta H. . ( 1999; ). Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium. . Int J Syst Bacteriol 49:, 277–282. [CrossRef] [PubMed]
    [Google Scholar]
  41. Uchida H. , Hamana K. , Miyazaki M. , Yoshida T. , Nogi Y. . ( 2012; ). Parasphingopyxis lamellibrachiae gen. nov., sp. nov., isolated from a marine annelid worm. . Int J Syst Evol Microbiol 62:, 2224–2228. [CrossRef] [PubMed]
    [Google Scholar]
  42. Vandamme P. , Pot B. , Gillis M. , de Vos P. , Kersters K. , Swings J. . ( 1996; ). Polyphasic taxonomy, a consensus approach to bacterial systematics. . Microbiol Rev 60:, 407–438.[PubMed]
    [Google Scholar]
  43. Watts D. , MacBeath J. R. . ( 2001; ). Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. . Methods Mol Biol 167:, 153–170.[PubMed]
    [Google Scholar]
  44. Yabuuchi E. , Yano I. , Oyaizu H. , Hashimoto Y. , Ezaki T. , Yamamoto H. . ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . . Microbiol Immunol 34:, 99–119.[PubMed] [CrossRef]
    [Google Scholar]
  45. Yabuuchi E. , Kosako Y. , Naka T. , Suzuki S. , Yano I. . ( 1999; ). Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas . . Microbiol Immunol 43:, 339–349.[PubMed] [CrossRef]
    [Google Scholar]
  46. Yurkov V. , Stackebrandt E. , Buss O. , Vermeglio A. , Gorlenko V. , Beatty J. T. . ( 1997; ). Reorganization of the genus Erythromicrobium: description of “Erythromicrobium sibiricum” as Sandaracinobacter sibiricus gen. nov., sp. nov., and of “Erythromicrobium ursincola” as Erythromonas ursincola gen. nov., sp. nov.. Int J Syst Bacteriol 47:, 1172–1178. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.047704-0
Loading
/content/journal/ijsem/10.1099/ijs.0.047704-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error