1887

Abstract

An obligately aerobic, chemoheterotrophic, mesophilic prosthecate bacterium, designated strain CGM1-3EN, was isolated from the enrichment cultures of forest soil from Cheonggyesan Mountain, Republic of Korea. Cells were Gram-reaction-negative, motile rods (1.3–2.4 µm long by 0.30–0.75 µm wide) with single flagella. The strain grew at 10–37 °C (optimum 25–30 °C) and at pH 4.5–9.5 (optimum 5.0–7.0). The major cellular fatty acids were C, Cω7 11-methyl, C 3-OH and summed feature 8 (comprising Cω7/Cω6). The genomic DNA G+C content of strain CGM1-3EN was 63.7 mol%. The closest phylogenetic neighbour to strain CGM1-3EN was identified as DSM 4723 (97.2 % 16S rRNA gene sequence similarity) and the DNA–DNA hybridization value between strain CGM1-3EN and DSM 4723 was less than 24.5 %. Strain CGM1-3EN used -glucose, -fructose, sucrose, maltose, trehalose, -mannose, -mannitol, -sorbitol, -galactose, cellobiose, lactose, raffinose, fumarate, pyruvate, -alanine and glycerol as carbon sources. Based on data from the present polyphasic study, the forest soil isolate CGM1-3EN is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CGM1-3EN ( = AIM0088 = KCTC 32102 = JCM 18544).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.047423-0
2013-10-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3829.html?itemId=/content/journal/ijsem/10.1099/ijs.0.047423-0&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Strömpl C., Vancanneyt M., Lünsdorf H., Moore E. R.. ( 2001;). Determination of the systematic position of the genus Asticcacaulis Poindexter by a polyphasic analysis. . Int J Syst Evol Microbiol 51:, 27–34.[PubMed]
    [Google Scholar]
  2. Abraham W. R., Macedo A. J., Lünsdorf H., Fischer R., Pawelczyk S., Smit J., Vancanneyt M.. ( 2008;). Phylogeny by a polyphasic approach of the order Caulobacterales, proposal of Caulobacter mirabilis sp. nov., Phenylobacterium haematophilum sp. nov. and Phenylobacterium conjunctum sp. nov., and emendation of the genus Phenylobacterium.. Int J Syst Evol Microbiol 58:, 1939–1949. [CrossRef][PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  4. Chun J. S., Goodfellow M.. ( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45:, 240–245. [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  7. Huss V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  8. Johnson M. J., Thatcher E., Cox M. E.. ( 1995;). Techniques for controlling variability in gram staining of obligate anaerobes. . J Clin Microbiol 33:, 755–758.[PubMed]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecule. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  10. Kim S., Jeong H., Chun J.. ( 2007;). Clostridium aestuarii sp. nov., from tidal flat sediment. . Int J Syst Evol Microbiol 57:, 1315–1317. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Liu Z. P., Wang B. J., Liu S. J., Liu Y. H.. ( 2005;). Asticcacaulis taihuensis sp. nov., a novel stalked bacterium isolated from Taihu Lake, China. . Int J Syst Evol Microbiol 55:, 1239–1242. [CrossRef][PubMed]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  16. Oh Y. S., Roh D. H.. ( 2012;). Phenylobacterium muchangponense sp. nov., isolated from beach soil, and emended description of the genus Phenylobacterium.. Int J Syst Evol Microbiol 62:, 977–983. [CrossRef][PubMed]
    [Google Scholar]
  17. Pate J. L., Porter J. S., Jordan T. L.. ( 1973;). Asticcacaulis biprosthecum sp.nov. Life cycle, morphology and cultural characteristics. . Antonie van Leeuwenhoek 39:, 569–583. [CrossRef][PubMed]
    [Google Scholar]
  18. Poindexter J. S.. ( 1964;). Biological properties and classification of the Caulobacter group. . Bacteriol Rev 28:, 231–295.[PubMed]
    [Google Scholar]
  19. Powers E. M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  20. Sly L. I., Cox T. L., Beckenham T. B.. ( 1999;). The phylogenetic relationships of Caulobacter, Asticcacaulis and Brevundimonas species and their taxonomic implications. . Int J Syst Bacteriol 49:, 483–488. [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  22. Vasilyeva L. V., Omelchenko M. V., Berestovskaya Y. Y., Lysenko A. M., Abraham W. R., Dedysh S. N., Zavarzin G. A.. ( 2006;). Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil. . Int J Syst Evol Microbiol 56:, 2083–2088. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.047423-0
Loading
/content/journal/ijsem/10.1099/ijs.0.047423-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error