1887

Abstract

Bacterial strains YM16-303 and YM16-304 were isolated from a sample of seashore sand using a medium with an artificial seawater base. Both isolates grew slowly on marine agar, and were found to be Gram-reaction-positive, aerobic, non-motile and rod-shaped. The cell-wall peptidoglycan contained -diaminopimelic acid, glycine, alanine and hydroxyglutamic acid, and the acyl type of the muramic acid was glycolyl. The predominant menaquinone was MK-9(H). The 16S rRNA gene sequences of strains YM16-303 and YM16-304 were most similar to that of YM22-133, and phylogenetic analyses also indicated that they belong to the genus . YM22-133 and strains YM16-303 and YM16-304 should be classified as distinct species in the genus , however, since the 16S rRNA gene sequence similarity between them was low and the major cellular fatty acids and some physiological properties were different. Moreover, average nucleotide identity and maximal unique exact matches index values also supported the conclusion that they represent different species. On the basis of the above analyses, two novel species, sp. nov. (type strain YM16-303 = NBRC 109120 = KCTC 29139) and sp. nov. (type strain YM16-304 = NBRC 103263 = KCTC 29153), are proposed. The order , which contains the genus , currently includes six genera and only six species, and they are phylogenetically very far from each other. Phylogenetic analyses revealed that strains YM16-303 and YM16-304 clustered with closely related uncultured actinobacteria but not YM22-133, suggesting that many uncultured bacteria related to these isolates exist in the environment. This is the first report on interspecies relationships in the order .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.047316-0
2013-09-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3404.html?itemId=/content/journal/ijsem/10.1099/ijs.0.047316-0&mimeType=html&fmt=ahah

References

  1. Clark D. A., Norris P. R.. ( 1996;). Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous ion oxidation with Sulfobacillus species. . Microbiology 142:, 785–790. [CrossRef]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  3. Deloger M., El Karoui M., Petit M. A.. ( 2009;). A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. . J Bacteriol 191:, 91–99. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. ( 1972;). Toward defining the course of evolution: minimum change for a species tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  8. Gouy M., Guindon S., Gascuel O.. ( 2010;). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef][PubMed]
    [Google Scholar]
  9. Itoh T., Yamanoi K., Kudo T., Ohkuma M., Takashina T.. ( 2011;). Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field. . Int J Syst Evol Microbiol 61:, 1281–1285. [CrossRef][PubMed]
    [Google Scholar]
  10. Johnson D. B., Bacelar-Nicolau P., Okibe N., Thomas A., Hallberg K. B.. ( 2009;). Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. . Int J Syst Evol Microbiol 59:, 1082–1089. [CrossRef][PubMed]
    [Google Scholar]
  11. Kawamoto I., Oka T., Nara T.. ( 1981;). Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. . J Bacteriol 146:, 527–534.[PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  14. Konstantinidis K. T., Tiedje J. M.. ( 2005;). Towards a genome-based taxonomy for prokaryotes. . J Bacteriol 187:, 6258–6264. [CrossRef][PubMed]
    [Google Scholar]
  15. Kurahashi M., Fukunaga Y., Sakiyama Y., Harayama S., Yokota A.. ( 2009;). Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov.. Int J Syst Evol Microbiol 59:, 869–873. [CrossRef][PubMed]
    [Google Scholar]
  16. Matsumoto A., Kasai H., Matsuo Y., Ōmura S., Shizuri Y., Takahashi Y.. ( 2009;). Ilumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary. . J Gen Appl Microbiol 55:, 201–205. [CrossRef][PubMed]
    [Google Scholar]
  17. Saito H., Miura K.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  20. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  21. Tomiyasu I.. ( 1982;). Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. . J Bacteriol 151:, 828–837.[PubMed]
    [Google Scholar]
  22. Uchida K., Aida K.. ( 1977;). Acyl type of bacterial cell wall: its simple identification by colorimetric method. . J Gen Appl Microbiol 23:, 249–260. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.047316-0
Loading
/content/journal/ijsem/10.1099/ijs.0.047316-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error