1887

Abstract

Two Gram-negative, non-motile, rod-shaped strains, BQ4-1 and NHI3-2, isolated respectively from the healthy and diseased part of × canker bark, were characterized using a polyphasic approach. Chemotaxonomic characterization supported the inclusion of the two strains in the genus , with genomic DNA G+C contents (42.5–43 mol%) within the range observed for this genus (38–47 mol%) and 9-octadecenoic acid (Cω9, 39.87 %), hexadecanoic acid (C, 11.26 %) and summed feature 3 (comprising Cω7/Cω6, 18.90 %) as major fatty acids. Phylogenetic analysis based on 16S rRNA, and gene sequences revealed that strains BQ4-1 and NHI3 did not cluster with any species with validly published names, and formed a distinct cluster with 99–100 % bootstrap support on three phylogenetic trees within the genus . Acid was not produced from -glucose, and haemolysis was not observed on agar media supplemented with sheep erythrocytes. On the basis of phenotypic, genotypic and phylogenetic characteristics, the two strains are considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BQ4-1 ( = CFCC 10780 = JCM 18011).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.047274-0
2013-08-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/2963.html?itemId=/content/journal/ijsem/10.1099/ijs.0.047274-0&mimeType=html&fmt=ahah

References

  1. Bouvet P. J. M. , Grimont P. A. D. . ( 1986; ). Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii . . Int J Syst Bacteriol 36:, 228–240. [CrossRef]
    [Google Scholar]
  2. Carr E. L. , Kämpfer P. , Patel B. K. C. , Gürtler V. , Seviour R. J. . ( 2003; ). Seven novel species of Acinetobacter isolated from activated sludge. . Int J Syst Evol Microbiol 53:, 953–963. [CrossRef] [PubMed]
    [Google Scholar]
  3. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  4. Kampfer P. . ( 1993; ). Grouping of Acinetobacter genomic species by cellular fatty acid composition. . Med Microbiol Lett 2:, 394–400.
    [Google Scholar]
  5. Kim D. , Baik K. S. , Kim M. S. , Park S. C. , Kim S. S. , Rhee M. S. , Kwak Y. S. , Seong C. N. . ( 2008; ). Acinetobacter soli sp. nov., isolated from forest soil. . J Microbiol 46:, 396–401. [CrossRef] [PubMed]
    [Google Scholar]
  6. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  7. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . New York:: Wiley;.
    [Google Scholar]
  8. Malhotra J. , Anand S. , Jindal S. , Rajagopal R. , Lal R. . ( 2012; ). Acinetobacter indicus sp. nov., isolated from a hexachlorocyclohexane dumpsite. . Int J Syst Evol Microbiol 62:, 2883–2890.[CrossRef]
    [Google Scholar]
  9. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  10. Nemec A. , Dijkshoorn L. , Cleenwerck I. , De Baere T. , Janssens D. , Van Der Reijden T. J. K. , Jezek P. , Vaneechoutte M. . ( 2003; ). Acinetobacter parvus sp. nov., a small-colony-forming species isolated from human clinical specimens. . Int J Syst Evol Microbiol 53:, 1563–1567. [CrossRef] [PubMed]
    [Google Scholar]
  11. Nemec A. , Musílek M. , Maixnerová M. , De Baere T. , van der Reijden T. J. K. , Vaneechoutte M. , Dijkshoorn L. . ( 2009; ). Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. . Int J Syst Evol Microbiol 59:, 118–124. [CrossRef] [PubMed]
    [Google Scholar]
  12. Nemec A. , Musílek M. , Šedo O. , De Baere T. , Maixnerová M. , van der Reijden T. J. K. , Zdráhal Z. , Vaneechoutte M. , Dijkshoorn L. . ( 2010; ). Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. . Int J Syst Evol Microbiol 60:, 896–903. [CrossRef] [PubMed]
    [Google Scholar]
  13. Nemec A. , Krizova L. , Maixnerova M. , van der Reijden T. J. , Deschaght P. , Passet V. , Vaneechoutte M. , Brisse S. , Dijkshoorn L. . ( 2011; ). Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). . Res Microbiol 162:, 393–404. [CrossRef] [PubMed]
    [Google Scholar]
  14. Nishimura Y. , Ino T. , Iizuka H. . ( 1988; ). Acinetobacter radioresistens sp. nov. isolated from cotton and soil. . Int J Syst Bacteriol 38:, 209–211. [CrossRef]
    [Google Scholar]
  15. Sasser M. , Kunitsky C. , Jackoway G. , Ezzell J. W. , Teska J. D. , Harper B. , Parker S. , Barden D. , Blair H. . & other authors ( 2005; ). Identification of Bacillus anthracis from culture using gas chromatographic analysis of fatty acid methyl esters. . J AOAC Int 88:, 178–181.[PubMed]
    [Google Scholar]
  16. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599.[CrossRef]
    [Google Scholar]
  17. Vaz-Moreira I. , Novo A. , Hantsis-Zacharov E. , Lopes A. R. , Gomila M. , Nunes O. C. , Manaia C. M. , Halpern M. . ( 2011; ). Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewater. . Int J Syst Evol Microbiol 61:, 2837–2843. [CrossRef] [PubMed]
    [Google Scholar]
  18. Yamamoto S. , Harayama S. . ( 1995; ). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. . Appl Environ Microbiol 61:, 1104–1109.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.047274-0
Loading
/content/journal/ijsem/10.1099/ijs.0.047274-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error