1887

Abstract

Two strains of aerobic, non-motile, Gram-reaction-positive cocci were independently isolated from geographically distinct spacecraft assembly clean room facilities (Kennedy Space Center, Florida, USA and Centre Spatial Guyanais, Kourou, French Guiana). A polyphasic study was carried out to delineate the taxonomic identity of these two isolates (1P05MA and KO_PS43). The 16S rRNA gene sequences exhibited a high similarity when compared to each other (100 %) and lower than 96.7 % relatedness with ATCC 15481, ATCC BAA-272, DSM 16406 and DSM 17585. In contrast with previously described species, the novel isolates maintained their coccidal morphology throughout their growth and did not exhibit the rod–coccus life cycle typically observed in nearly all species, except . The distinct taxonomic identity of the novel isolates was confirmed based on their unique cell-wall peptidoglycan type (A.11.20; Lys-Ser-Ala) and polar lipid profile (presence of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid and two unknown glycolipids). The G+C content of the genomic DNA was 70.6 mol%. The novel strains revealed MK-9(H) and MK-8(H) as dominant menaquinones and exhibited fatty acid profiles consisting of major amounts of anteiso-C and anteiso-C and moderate amounts of iso-C discriminating them again from closely related species. Based on these observations, the authors propose that strains 1P05MA and KO_PS43 be assigned into a separate genus gen. nov. For this new taxon, comprising strains 1P05MA and KO_PS43, we propose the name gen. nov., sp. nov. (the type species of ), represented by the type strain 1P05MA ( = NRRL B-59547 = DSM 30849).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.047134-0
2013-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2463.html?itemId=/content/journal/ijsem/10.1099/ijs.0.047134-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Schumann P., Steiner R., Lubitz W., Busse H. J.. ( 2002;). Citricoccus muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. . Int J Syst Evol Microbiol 52:, 2095–2100. [CrossRef][PubMed]
    [Google Scholar]
  2. Bruce J.. ( 1996;). Automated system rapidly identifies and characterizes microorganisms in food. . Food Technol 50:, 77–81.
    [Google Scholar]
  3. Busse H. J., Wieser M., Buczolits S.. ( 2012;). Arthrobacter. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 5, pp. 578–624. Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Suzuki K.-I., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  4. Chang H. W., Bae J. W., Nam Y. D., Kwon H. Y., Park J. R., Shin K. S., Kim K. H., Quan Z. X., Rhee S. K.. & other authors ( 2007;). Arthrobacter subterraneus sp. nov., isolated from deep subsurface water of the South Coast of Korea. . J Microbiol Biotechnol 17:, 1875–1879.[PubMed]
    [Google Scholar]
  5. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  6. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  7. Collins M. D., Goodfellow M., Minnikin D. E.. ( 1982;). Polar lipid composition in the classification of Arthrobacter and Microbacterium. . FEMS Microbiol Lett 15:, 299–302. [CrossRef]
    [Google Scholar]
  8. Crombach W. H. J., van Veen W. L., van der Vlies A. W., Bots W. C. P. M.. ( 1974;). DNA base composition of some sheathed bacteria. . Antonie van Leeuwenhoek 40:, 217–220. [CrossRef][PubMed]
    [Google Scholar]
  9. De Ley J., Tijtgat R.. ( 1970;). Evaluation of membrane filter methods for DNA-DNA hybridization. . Antonie van Leeuwenhoek 36:, 461–474. [CrossRef][PubMed]
    [Google Scholar]
  10. De Smedt J., De Ley J.. ( 1977;). Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. . Int J Syst Bacteriol 27:, 222–240. [CrossRef]
    [Google Scholar]
  11. Embley T. M., Wait R.. ( 1994;). Structural Lipids of Eubacteria. New York:: Wiley;.
    [Google Scholar]
  12. Funke G., Hutson R. A., Bernard K. A., Pfyffer G. E., Wauters G., Collins M. D.. ( 1996;). Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov.. J Clin Microbiol 34:, 2356–2363.[PubMed]
    [Google Scholar]
  13. Ghosh S., Osman S., Vaishampayan P., Venkateswaran K.. ( 2010;). Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled. . Astrobiology 10:, 325–335. [CrossRef][PubMed]
    [Google Scholar]
  14. Heyrman J., Verbeeren J., Schumann P., Swings J., De Vos P.. ( 2005;). Six novel Arthrobacter species isolated from deteriorated mural paintings. . Int J Syst Evol Microbiol 55:, 1457–1464. [CrossRef][PubMed]
    [Google Scholar]
  15. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  16. Kempf M. J., Chen F., Kern R., Venkateswaran K.. ( 2005;). Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. . Astrobiology 5:, 391–405. [CrossRef][PubMed]
    [Google Scholar]
  17. La Duc M. T., Dekas A. E., Osman S., Moissl C., Newcombe D., Venkateswaran K.. ( 2007;). Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. . Appl Environ Microbiol 73:, 2600–2611. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee J.-S., Lee K. C., Pyun Y.-R., Bae K. S.. ( 2003;). Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. . Int J Syst Evol Microbiol 53:, 1277–1280. [CrossRef][PubMed]
    [Google Scholar]
  19. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  20. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  21. Munoz R., Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K. H., Glöckner F. O., Rosselló-Móra R.. ( 2011;). Release LTPs104 of the All-Species Living Tree. . Syst Appl Microbiol 34:, 169–170. [CrossRef][PubMed]
    [Google Scholar]
  22. Newcombe D. A., Schuerger A. C., Benardini J. N., Dickinson D., Tanner R., Venkateswaran K.. ( 2005;). Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. . Appl Environ Microbiol 71:, 8147–8156. [CrossRef][PubMed]
    [Google Scholar]
  23. Puleo J. R., Bergstrom S. L., Peeler J. T., Oxborrow G. S.. ( 1978;). Thermal resistance of naturally occurring airborne bacterial spores. . Appl Environ Microbiol 36:, 473–479.[PubMed]
    [Google Scholar]
  24. Rummel J. D.. ( 2001;). Planetary exploration in the time of astrobiology: protecting against biological contamination. . Proc Natl Acad Sci U S A 98:, 2128–2131. [CrossRef][PubMed]
    [Google Scholar]
  25. Satomi M., La Duc M. T., Venkateswaran K.. ( 2006;). Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. . Int J Syst Evol Microbiol 56:, 1735–1740. [CrossRef][PubMed]
    [Google Scholar]
  26. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  27. Schumann P.. ( 2011;). Peptidoglycan structure. . In Taxonomy of Prokaryotes, Methods in Microbiology, vol. 38, pp. 101. Edited by Rainey F., Oren A... London:: Elsevier;. [CrossRef]
    [Google Scholar]
  28. Shaw N., Stead D.. ( 1971;). Lipid composition of some species of Arthrobacter. . J Bacteriol 107:, 130–133.[PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M.. ( 1994;). A place for DNA–DNA reassociation and 16SrRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Koch C., Gvozdiak O., Schumann P.. ( 1995;). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend.. Int J Syst Bacteriol 45:, 682–692. [CrossRef][PubMed]
    [Google Scholar]
  32. Stieglmeier M., Wirth R., Kminek G., Moissl-Eichinger C.. ( 2009;). Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. . Appl Environ Microbiol 75:, 3484–3491. [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 332–393. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  34. Tóth E. M., Kéki Z., Bohus V., Borsodi A. K., Márialigeti K., Schumann P.. ( 2012;). Aquipuribacter hungaricus gen. nov., sp. nov., an actinobacterium isolated from the ultrapure water system of a power plant. . Int J Syst Evol Microbiol 62:, 556–562. [CrossRef][PubMed]
    [Google Scholar]
  35. Wauters G., Charlier J., Janssens M., Delmée M.. ( 2000;). Identification of Arthrobacter oxydans, Arthrobacter luteolus sp. nov., and Arthrobacter albus sp. nov., isolated from human clinical specimens. . J Clin Microbiol 38:, 2412–2415.[PubMed]
    [Google Scholar]
  36. Wieser M., Denner E. B., Kämpfer P., Schumann P., Tindall B., Steiner U., Vybiral D., Lubitz W., Maszenan A. M.. & other authors ( 2002;). Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn, 1872) and Micrococcus lylae (Kloos et al., 1974). . Int J Syst Evol Microbiol 52:, 629–637.[PubMed]
    [Google Scholar]
  37. Wu C., Lu X., Qin M., Wang Y., Ruan J.. ( 1989;). Analysis of menaquinone compound in microbial cells by HPLC. . Microbiology [English translation of Microbiology (Beijing)] 16:, 176–178.
    [Google Scholar]
  38. Zhou Y., Wei W., Wang X., Lai R.. ( 2009;). Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus. . Int J Syst Evol Microbiol 59:, 259–263. [CrossRef][PubMed]
    [Google Scholar]
  39. Zhou Y., Chen X., Zhang Y., Wang W., Xu J.. ( 2012;). Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas. . Int J Syst Evol Microbiol 62:, 764–769. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.047134-0
Loading
/content/journal/ijsem/10.1099/ijs.0.047134-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error