1887

Abstract

The taxonomic status of a bacterium, strain DC-8, isolated from activated sludge, was determined using a polyphasic taxonomic approach. The cells of strain DC-8 were Gram-negative, non-motile, non-spore-forming and rod-shaped. The isolate grew at temperature range of 10–40 °C (optimum 30–35 °C), pH range of 5.0–10.0 (optimum 6.5–8.0) and NaCl concentrations of 0–5 % (optimum 0–1 %). The predominant menaquinone of strain DC-8 was MK-7 and major fatty acids were summed feature 3 (Cω6 and/or Cω7; 39.7 %), iso-C (33.7 %) and C (5.2 %). The DNA G+C content was 39.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain DC-8 was a member of the genus . Strain DC-8 shared the highest similarity with SY1 (98.4 %), IAM 14316 (98.3 %), CR11 (98.0 %) and 6.2S (97.9 %) and shared less than 97 % similarity with other members of the genus . DNA–DNA hybridization experiments showed that the DNA–DNA relatedness values between strain DC-8 and its closest phylogenetic neighbours were below 70 %. Based on the phylogenetic analysis, DNA–DNA hybridization, whole-cell fatty acid composition as well as biochemical characteristics, strain DC-8 was clearly distinguished from all recognized species of the genus and should be classified as a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DC-8 ( = CCTCC AB 2012020 = KACC 16850).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.046987-0
2013-06-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2260.html?itemId=/content/journal/ijsem/10.1099/ijs.0.046987-0&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  2. Buck J. D. . ( 1982; ). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  3. Choi H.-A. , Lee S.-S. . ( 2012; ). Sphingobacterium kyonggiense sp. nov., isolated from perchloroethylene (PCE) contaminated soil and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii . . Int J Syst Evol Microbiol 62:, 2559–2564.[CrossRef]
    [Google Scholar]
  4. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230.[CrossRef]
    [Google Scholar]
  5. Cowan S. T. , Steel K. J. . ( 1965; ). Manual for the identification of medical bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  6. Duan S. , Liu Z. , Feng X. , Zheng K. , Cheng L. . ( 2009; ). Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. . J Microbiol 47:, 693–698. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein, J. (1993). phylip (phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, USA.
  9. He X. , Xiao T. , Kuang H. , Lan X. , Tudahong M. , Osman G. , Fang C. , Rahman E. . ( 2010; ). Sphingobacterium shayense sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 60:, 2377–2381. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim K.-H. , Ten L. N. , Liu Q.-M. , Im W.-T. , Lee S.-T. . ( 2006; ). Sphingobacterium daejeonense sp. nov., isolated from a compost sample. . Int J Syst Evol Microbiol 56:, 2031–2036. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. In nucleic acid techniques in bacterial systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  14. Lanyi B. . ( 1987; ). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  15. Liu R. , Liu H. , Zhang C.-X. , Yang S.-Y. , Liu X.-H. , Zhang K.-Y. , Lai R. . ( 2008; ). Sphingobacterium siyangense sp. nov., isolated from farm soil. . Int J Syst Evol Microbiol 58:, 1458–1462. [CrossRef] [PubMed]
    [Google Scholar]
  16. Liu J. , Yang L. L. , Xu C. K. , Xi J. Q. , Yang F. X. , Zhou F. , Zhou Y. , Mo M. H. , Li W. J. . ( 2012; ). Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. . Int J Syst Evol Microbiol 62:, 1809–1813. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mandel M. , Marmur J. . ( 1968; ). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  18. Marqués A. M. , Burgos-Díaz C. , Aranda F. J. , Teruel J. A. , Manresa A. , Ortiz A. , Farfán M. . ( 2012; ). Sphingobacterium detergens sp. nov., a surfactant-producing bacterium isolated from soil. . Int J Syst Evol Microbiol 62:, 3036–3041. [CrossRef] [PubMed]
    [Google Scholar]
  19. Matsuyama H. , Katoh H. , Ohkushi T. , Satoh A. , Kawahara K. , Yumoto I. . ( 2008; ). Sphingobacterium kitahiroshimense sp. nov., isolated from soil. . Int J Syst Evol Microbiol 58:, 1576–1579. [CrossRef] [PubMed]
    [Google Scholar]
  20. Mehnaz S. , Weselowski B. , Lazarovits G. . ( 2007; ). Sphingobacterium canadense sp. nov., an isolate from corn roots. . Syst Appl Microbiol 30:, 519–524. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ohta H. , Hattori T. . ( 1983; ). Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. . Antonie van Leeuwenhoek 49:, 429–446.[PubMed]
    [Google Scholar]
  22. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sambrook J. , Russell D. W. . ( 2001; ). Molecular cloning: a laboratory manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  24. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  25. Schmidt V. S. J. , Wenning M. , Scherer S. . ( 2012; ). Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. . Int J Syst Evol Microbiol 62:, 1506–1511. [CrossRef] [PubMed]
    [Google Scholar]
  26. Shivaji S. , Ray M. K. , Shyamala Rao N. , Saisree L. , Jagannadham M. V. , Seshu Kumar G. , Reddy G. S. N. , Bhargava P. M. . ( 1992; ). Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. . Int J Syst Bacteriol 42:, 102–106. [CrossRef]
    [Google Scholar]
  27. Steyn P. L. , Segers P. , Vancanneyt M. , Sandra P. , Kersters K. , Joubert J. J. . ( 1998; ). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48:, 165–177. [CrossRef] [PubMed]
    [Google Scholar]
  28. Suzuki T. , Yamasato K. . ( 1994; ). Phylogeny of spore-forming lactic acid bacteria based on 16S rRNA gene sequences. . FEMS Microbiol Lett 115:, 13–17. [CrossRef] [PubMed]
    [Google Scholar]
  29. Takeuchi M. , Yokota A. . ( 1992; ). Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov., and two genospecies of the genus Sphingobacterium and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . . J Gen Appl Microbiol 38:, 465–482. [CrossRef]
    [Google Scholar]
  30. Tamaoka J. , Katayama-Fujimura Y. , Kuraishi H. . ( 1983; ). Analysis of bacterial menaquinone mixtures by high-performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef] [PubMed]
    [Google Scholar]
  31. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  32. Ten L. N. , Liu Q. M. , Im W. T. , Aslam Z. , Lee S. T. . ( 2006; ). Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. . J Microbiol Biotechnol 16:, 1728–1733.
    [Google Scholar]
  33. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  35. Wei W. , Zhou Y. , Wang X. , Huang X. , Lai R. . ( 2008; ). Sphingobacterium anhuiense sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 58:, 2098–2101. [CrossRef] [PubMed]
    [Google Scholar]
  36. Yabuuchi E. , Kaneko T. , Yano I. , Moss C. W. , Miyoshi N. . ( 1983; ). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. . Int J Syst Bacteriol 33:, 580–598. [CrossRef]
    [Google Scholar]
  37. Yoo S.-H. , Weon H.-Y. , Jang H.-B. , Kim B.-Y. , Kwon S.-W. , Go S.-J. , Stackebrandt E. . ( 2007; ). Sphingobacterium composti sp. nov., isolated from cotton-waste composts. . Int J Syst Evol Microbiol 57:, 1590–1593. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zhang J. , Zheng J.-W. , Cho B. C. , Hwang C. Y. , Fang C. , He J. , Li S.-P. . ( 2012; ). Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. . Int J Syst Evol Microbiol 62:, 683–687. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.046987-0
Loading
/content/journal/ijsem/10.1099/ijs.0.046987-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error