1887

Abstract

A novel psychrotolerant, Gram-negative, shiny white, curved-rod-shaped, facultatively anaerobic bacterium PB1 was isolated from a soil sample collected from a glacier forefield of the Larsemann Hills, East Antarctica. Isolate PB1 has catalase and low urease activity and hydrolyses gelatin and starch. Strain PB1 is able to grow between −5 °C and 30 °C with optimum growth at 14–20 °C. Glycerol, -arabinose, -xylose, -galactose, -fructose, -lyxose, -fucose and potassium gluconate are used as sole carbon sources. The major quinone is ubiquinone Q-8. The major fatty acids (>10 %) for PB1 are C (19.1 %), Cω7 (44.6 %) and Cω7 (16.2 %). The major polyamines are putrescine [54.9 µmol (g dry weight)] and 2-hydroxy putrescine [18.5 µmol (g dry weight)]. DNA G+C content is 62.5 mol%. Strain PB1 is phylogenetically related to species of the genus , with highest 16S rRNA gene sequence similarities to (97.3 %), (97.2 %), (97.2 %) and (97.0 %). The DNA–DNA relatedness values were below 30 % between PB1 and the type strains of , and . The different geographical origin of strain PB1 from its closest phylogenetic relatives resulted in different phenotypic and genotypic specifications, whereby strain PB represents a novel species of the genus , for which the name is proposed. The type strain is PB1 (DSM 26001 = LMG 27282).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.046920-0
2013-09-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3197.html?itemId=/content/journal/ijsem/10.1099/ijs.0.046920-0&mimeType=html&fmt=ahah

References

  1. Bajerski F., Ganzert L., Mangelsdorf K., Lipski A., Wagner D.. ( 2011;). Cryobacterium arcticum sp. nov., a psychrotolerant bacterium from an Arctic soil. . Int J Syst Evol Microbiol 61:, 1849–1853. [CrossRef][PubMed]
    [Google Scholar]
  2. Baldani J. I., Baldani V. L. D., Seldin L., Döbereiner J.. ( 1986;). Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. . Int J Syst Bacteriol 36:, 86–93. [CrossRef]
    [Google Scholar]
  3. Baldani J. I., Pot B., Kirchhof G., Falsen E., Baldani V. L. D., Olivares F. L., Hoste B., Kersters K., Hartmann A.. & other authors ( 1996;). Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a milk plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. . Int J Syst Bacteriol 46:, 802–810. [CrossRef][PubMed]
    [Google Scholar]
  4. Busse J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  5. Busse H.-J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  6. Carro L., Rivas R., León-Barrios M., González-Tirante M., Velázquez E., Valverde A.. ( 2012;). Herbaspirillum canariense sp. nov., Herbaspirillum aurantiacum sp. nov. and Herbaspirillum soli sp. nov., isolated from volcanic mountain soil, and emended description of the genus Herbaspirillum. . Int J Syst Evol Microbiol 62:, 1300–1306. [CrossRef][PubMed]
    [Google Scholar]
  7. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  8. Ding L., Yokota A.. ( 2004;). Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov.. Int J Syst Evol Microbiol 54:, 2223–2230. [CrossRef][PubMed]
    [Google Scholar]
  9. Dojka M. A., Hugenholtz P., Haack S. K., Pace N. R.. ( 1998;). Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. . Appl Environ Microbiol 64:, 3869–3877.[PubMed]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  11. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  13. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  14. Ganzert L., Bajerski F., Mangelsdorf K., Lipski A., Wagner D.. ( 2011;). Arthrobacter livingstonensis sp. nov. and Arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from Antarctic soil. . Int J Syst Evol Microbiol 61:, 979–984. [CrossRef][PubMed]
    [Google Scholar]
  15. Goris J., Suzuki K.-i., Vos P. D., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  16. Hamana K., Takeuchi M.. ( 1998;). Polyamine profiles as chemotaxonomic markers within alpha, beta, gamma, delta, and epsilon subclasses of class Proteobacteria: distribution of 2-hydroxyputrescine and homospermidine. . Microbiol Cult Collect 14:, 1–14.
    [Google Scholar]
  17. Hoaki T., Nishijima M., Kato M., Adachi K., Mizobuchi S., Hanzawa N., Maruyama T.. ( 1994;). Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids. . Appl Environ Microbiol 60:, 2898–2904.[PubMed]
    [Google Scholar]
  18. Hu H.-Y., Fujie K., Urano K.. ( 1999;). Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. . J Biosci Bioeng 87:, 378–382. [CrossRef][PubMed]
    [Google Scholar]
  19. Im W.-T., Bae H.-S., Yokota A., Lee S. T.. ( 2004;). Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. . Int J Syst Evol Microbiol 54:, 851–855. [CrossRef][PubMed]
    [Google Scholar]
  20. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  21. Jung S.-Y., Lee M.-H., Oh T.-K., Yoon J.-H.. ( 2007;). Herbaspirillum rhizosphaerae sp. nov., isolated from rhizosphere soil of Allium victorialis var. platyphyllum. . Int J Syst Evol Microbiol 57:, 2284–2288. [CrossRef][PubMed]
    [Google Scholar]
  22. Kämpfer P., Rosselló-Mora R., Hermansson M., Persson F., Huber B., Falsen E., Busse H.-J.. ( 2007;). Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. . Int J Syst Evol Microbiol 57:, 1510–1515. [CrossRef][PubMed]
    [Google Scholar]
  23. Kämpfer P., Glaeser S. P., Lodders N., Busse H.-J., Falsen E.. ( 2012;). Herminiimonas contaminans sp. nov., isolated as a contaminant of biopharmaceuticals. . Int J Syst Evol Microbiol 63:, 412–417. [CrossRef][PubMed]
    [Google Scholar]
  24. Kirchhof G., Eckert B., Stoffels M., Baldani J. I., Reis V. M., Hartmann A.. ( 2001;). Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. . Int J Syst Evol Microbiol 51:, 157–168.[PubMed]
    [Google Scholar]
  25. Kovacs N.. ( 1956;). Identification of Pseudomonas pyocyanea by the oxidase reaction. . Nature 178:, 703. [CrossRef][PubMed]
    [Google Scholar]
  26. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  27. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  29. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  30. Nichols D., Bowman J., Sanderson K., Nichols C. M., Lewis T., McMeekin T., Nichols P. D.. ( 1999;). Developments with antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. . Curr Opin Biotechnol 10:, 240–246. [CrossRef][PubMed]
    [Google Scholar]
  31. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef][PubMed]
    [Google Scholar]
  32. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  33. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  34. Rhuland L. E., Work E., Denman R. F., Hoare D. S.. ( 1955;). The behaviour of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  35. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  36. Schröder H.. ( 1991;). Mikrobiologisches Praktikum, , 5th edn.. Berlin:: Volk und Wissen Verlag;.
    [Google Scholar]
  37. Schumann P.. ( 2011;). Peptidoglycan Structure. . In Taxonomy of Prokaryotes, Methods in Microbiology, vol. 38, pp. 101–129. Edited by Rainey F., Oren A... London:: Academic Press;. [CrossRef]
    [Google Scholar]
  38. Stoltzfus J. R., So R., Malarvithi P. P., Ladha J. K., de Bruijn F. J.. ( 1997;). Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. . Plant Soil 194:, 25–36. [CrossRef]
    [Google Scholar]
  39. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  40. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  42. Zink K.-G., Mangelsdorf K.. ( 2004;). Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis. . Anal Bioanal Chem 380:, 798–812. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.046920-0
Loading
/content/journal/ijsem/10.1099/ijs.0.046920-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error