1887

Abstract

A novel aerobic soil actinobacterium (strain MB10) belonging to the genus was isolated from rice field soil samples collected from Jagatpur, Orissa, India. Cells were Gram-stain positive, short rod-shaped and motile. The strain was oxidase-negative and catalase-positive. Heterotrophic growth was observed at pH 5.0–11.0 and at 16–37 °C; optimum growth was observed at 28 °C and pH 7.0–9.0. The DNA G+C content was 71.6 mol%. Predominant cellular fatty acids of strain MB10 were iso-C, anteiso-C, C, iso-C and anteiso-C. Cell wall sugars were galactose, glucose and rhamnose. The major isoprenoid quinones were MK-9 (10 %), MK-10 (43 %) and MK-11 (36 %). The peptidoglycan represents the peptidoglycan type B2β. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipid and unknown glycolipids. 16S rRNA gene sequence identity revealed the strain MB10 clustered within the radiation of the genus and showed 99.2 % similarity with DSM 20145. However, DNA–DNA similarity study was 37.0 % with DSM 20145, the nearest phylogenetic relative. On the basis of phenotypic and chemotaxonomic properties, 16S rRNA gene sequence analysis and DNA–DNA reassociation studies, it is proposed that strain MB10 represents a novel species of the genus , for which the name sp. nov. is proposed; the type strain is MB10 ( = JCM 16837 = DSM 23396).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.046870-0
2013-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2442.html?itemId=/content/journal/ijsem/10.1099/ijs.0.046870-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Anand S., Bala K., Saxena A., Schumann P., Lal R.. ( 2012;). Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site. . Int J Syst Evol Microbiol 62:, 2114–2120. [CrossRef][PubMed]
    [Google Scholar]
  3. Bakir M. A., Kudo T., Benno Y.. ( 2008;). Microbacterium hatanonis sp. nov., isolated as a contaminant of hairspray. . Int J Syst Evol Microbiol 62:, 716–21. [CrossRef][PubMed]
    [Google Scholar]
  4. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Yi H., Won S., Chun J.. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–21. [CrossRef][PubMed]
    [Google Scholar]
  5. Collins M. D., Jones D., Kroppenstedt R. M.. ( 1983;). Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a Redefined Genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov. . Syst Appl Microbiol 4:, 65–78. [CrossRef][PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Jyoti V., Narayan K. D., Das S. K.. ( 2010;). Gulbenkiania indica sp. nov., isolated from a sulfur spring. . Int J Syst Evol Microbiol 60:, 1052–1055. [CrossRef][PubMed]
    [Google Scholar]
  9. Kämpfer P., Schäfer J., Lodders N., Martin K.. ( 2012;). Microbacterium murale sp. nov., isolated from an indoor wall. . Int J Syst Evol Microbiol 62:, 2669–2673. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Kuykendall L. D., Roy M. D., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  12. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227:, 680–685. [CrossRef][PubMed]
    [Google Scholar]
  13. Lee J. S., Lee K. C., Park Y. H.. ( 2006;). Microbacterium koreense sp. nov., from sea water in the South Sea of Korea. . Int J Syst Evol Microbiol 56:, 423–427. [CrossRef][PubMed]
    [Google Scholar]
  14. Legard D. E., McQuilken M. P., Whipps J. M., Fenlon J. S., Fermor T. R., Thompson I. P., Bailey M. J., Lynch J. M.. ( 1994;). Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganism. . Agric Ecosyst Environ 50:, 87–101. [CrossRef]
    [Google Scholar]
  15. McInroy J. A., Kloepper J. W.. ( 1995;). Survey of indigenous bacterial endophytes from cotton and sweet corn. . Plant Soil 173:, 337–342. [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  17. Miller J. H.. ( 1977;). Experiments in Molecular Genetics, New York:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  18. Orla-Jensen S.. ( 1919;). The Lactic Acid Bacteria. Copenhagen:: Andreas Fredrick Host and Son;.
    [Google Scholar]
  19. Panday D., Das S. K.. ( 2010;). Chelatococcus sambhunathii sp. nov., a moderately thermophilic alphaproteobacterium isolated from hot spring sediment. . Int J Syst Evol Microbiol 60:, 861–865. [CrossRef][PubMed]
    [Google Scholar]
  20. Panday D., Schumann P., Das S. K.. ( 2011;). Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). . Int J Syst Evol Microbiol 61:, 2632–2639. [CrossRef][PubMed]
    [Google Scholar]
  21. Park H. Y., Kim K. K., Jin L., Lee S. T.. ( 2006;). Microbacterium paludicola sp. nov., a novel xylanolytic bacterium isolated from swamp forest. . Int J Syst Evol Microbiol 56:, 535–539. [CrossRef][PubMed]
    [Google Scholar]
  22. Rivas R., Trujillo M. E., Sánchez M., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2004;). Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra. . Int J Syst Evol Microbiol 54:, 513–517. [CrossRef][PubMed]
    [Google Scholar]
  23. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  24. Schumann P.. ( 2011;). Peptidoglycan structure. . In Methods in Microbiology Taxonomy of Prokaryotes, vol. 38, pp. 101–129. Edited by Rainey F., Oren A... London:: Academic Press;. [CrossRef]
    [Google Scholar]
  25. Schumann P., Kämpfer P., Busse H. J., Evtushenko L. I..Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes ( 2009;). Proposed minimal standards for describing new genera and species of the suborder Micrococcineae. . Int J Syst Evol Microbiol 59:, 1823–1849. [CrossRef][PubMed]
    [Google Scholar]
  26. Shivaji S., Bhadra B., Rao R. S., Chaturvedi P., Pindi P. K., Raghukumar C.. ( 2007;). Microbacterium indicum sp. nov., isolated from a deep-sea sediment sample from the Chagos Trench, Indian Ocean. . Int J Syst Evol Microbiol 57:, 1819–1822. [CrossRef][PubMed]
    [Google Scholar]
  27. Takeuchi M., Hatano K.. ( 1998a;). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. . Int J Syst Bacteriol 48:, 739–747. [CrossRef][PubMed]
    [Google Scholar]
  28. Takeuchi M., Hatano K.. ( 1998b;). Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov. . Int J Syst Bacteriol 48:, 973–982. [CrossRef][PubMed]
    [Google Scholar]
  29. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  30. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson I. P., Bailey M. J., Fenlon J. S., Fermor T. R., Lilley A. K., Lynch J. M., McCormack P. J., McQuilken M. P., Purdy K. J.. & other authors ( 1993;). Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). . Plant Soil 150:, 177–191. [CrossRef]
    [Google Scholar]
  32. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  33. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  34. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M... Washington, DC, USA:: L. R. Snyder American Society for Microbiology;.
    [Google Scholar]
  35. Vauterin L., Vauterin P.. ( 1992;). Computer aided objective comparison of electrophoretic patterns for grouping and identification of microorganisms. . Eur Microbiol 1:, 37–41.
    [Google Scholar]
  36. Vaz-Moreira I., Lopes A. R., Falsen E., Schumann P., Nunes O. C., Manaia C. M.. ( 2008;). Microbacterium luticocti sp. nov., isolated from sewage sludge compost. . Int J Syst Evol Microbiol 58:, 1700–1704. [CrossRef][PubMed]
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  38. Yokota A., Takeuchi M., Sakane T., Weiss N.. ( 1993;). Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. . Int J Syst Bacteriol 43:, 555–564. [CrossRef][PubMed]
    [Google Scholar]
  39. Yu L., Lai Q., Yi Z., Zhang L., Huang Y., Gu L., Tang X.. ( 2013;). Microbacterium sediminis sp. nov., a psychrotolerant, thermotolerant, halotolerant, alkalitolerant actinomycete isolated from deep-sea sediment. . Int J Syst Evol Microbiol 63:, 25–30. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.046870-0
Loading
/content/journal/ijsem/10.1099/ijs.0.046870-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error