1887

Abstract

A Gram-negative, facultative anaerobic, motile, spiral, straight-to-slightly curved rod-shaped and nitrogen-fixing strain, designated SgZ-5, was isolated from a microbial fuel cell (MFC) and was characterized by means of a polyphasic approach. Growth occurred with 0–1 % (w/v) NaCl (optimum 1 %) and at pH 5.5–8.5 (optimum pH 7.2) and at 25–37 °C (optimum 30 °C) in nutrient broth (NB). The strain had the ability to grow under anaerobic conditions via the oxidation of various organic compounds coupled to the reduction of anthraquione-2,6-disulfonate (AQDS). Chemotaxonomic characteristics (main ubiquinone Q-10, major fatty acid Cω7/Cω6 and DNA G+C content 67.7 mol%) were similar to those of members of the genus . According to the results of phylogenetic analyses, strain SgZ-5 belonged to the genus within the family of the class , and was related most closely to the type strains of , and (98.0, 97.6 and 97.1 % 16S rRNA gene sequence similarity, respectively). DNA–DNA pairing studies showed that the unidentified organism displayed reassociation values of 36.7±3.7, 24.1±2.2 and 22.3±2.4 % to the type strains of , and , respectively. Similarities between gene sequences of strain SgZ-5 and members of the genus ranged from 94.0 to 97.0 %. A combination of phenotypic, chemotaxonomic, phylogenetic and genotypic data clearly indicated that strain SgZ-5 represents a novel species, for which the name sp. nov. is proposed. The type strain is SgZ-5 ( = CCTCC AB 2012021 = KACC 16605).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.046813-0
2013-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2618.html?itemId=/content/journal/ijsem/10.1099/ijs.0.046813-0&mimeType=html&fmt=ahah

References

  1. Ben Dekhil S., Cahill M., Stackebrandt E., Sly L. I.. ( 1997;). Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azopirillum largomobile comb. nov, and elevation of Conglomeromonas largomobilis subsp parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov.. Syst Appl Microbiol 20:, 72–77. [CrossRef]
    [Google Scholar]
  2. Burris R. H.. ( 1972;). Nitrogen fixation–assay methods and techniques. . Methods Enzymol 24:, 415–431. [CrossRef][PubMed]
    [Google Scholar]
  3. Cervantes F. J., de Bok F. A. M., Duong-Dac T., Stams A. J. M., Lettinga G., Field J. A.. ( 2002;). Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. . Environ Microbiol 4:, 51–57. [CrossRef][PubMed]
    [Google Scholar]
  4. Coates J. D., Ellis D. J., Blunt-Harris E. L., Gaw C. V., Roden E. E., Lovley D. R.. ( 1998;). Recovery of humic-reducing bacteria from a diversity of environments. . Appl Environ Microbiol 64:, 1504–1509.[PubMed]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  6. Dobereiner J.. ( 1983;). Ten years of Azospirillum. . In Azospirillum II: Genetics, Physiology, Ecology, pp. 9–23. Edited by Klingmueller W... Basel:: Birkhaeuser;.
    [Google Scholar]
  7. Doetsch R. N.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Philips G. B... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  8. Dong X., Cai M.. ( 2001;). Manual of Systematic and Determinative Bacteriology. Beijing, China:: Academic Press;.
    [Google Scholar]
  9. Eckert B., Weber O. B., Kirchhof G., Halbritter A., Stoffels M., Hartmann A.. ( 2001;). Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. . Int J Syst Evol Microbiol 51:, 17–26.[PubMed]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  11. Fedorov D. N., Ivanova E. G., Doronina N. V., Trotsenko IuA.. ( 2008;). [A new system of degenerate-oligonucleotide primers for detection and amplification of nifHD genes]. . Mikrobiologiia 77:, 286–288 (in Russian).[PubMed]
    [Google Scholar]
  12. Field J. A., Cervantes F. J.. ( 2005;). Microbial redox reactions mediated by humus and structurally related quinones. . In Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice (NATO Science Series vol. 52), pp. 343–352. Edited by Perminova I. V., Hatfield K., Hertkorn N... Dordrecht:: Springer;. [CrossRef]
    [Google Scholar]
  13. Hong Y. G., Guo J., Xu Z. C., Xu M. Y., Sun G. P.. ( 2007;). Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. . J Microbiol Biotechnol 17:, 428–437.[PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Lavrinenko K., Chernousova E., Gridneva E., Dubinina G., Akimov V., Kuever J., Lysenko A., Grabovich M.. ( 2010;). Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. . Int J Syst Evol Microbiol 60:, 2832–2837. [CrossRef][PubMed]
    [Google Scholar]
  16. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  17. Li X. M., Zhou S. G., Li F. B., Wu C. Y., Zhuang L., Xu W., Liu L.. ( 2009;). Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17. . J Appl Microbiol 106:, 130–139. [CrossRef][PubMed]
    [Google Scholar]
  18. Lin S. Y., Young C. C., Hupfer H., Siering C., Arun A. B., Chen W. M., Lai W. A., Shen F. T., Rekha P. D., Yassin A. F.. ( 2009;). Azospirillum picis sp. nov., isolated from discarded tar. . Int J Syst Evol Microbiol 59:, 761–765. [CrossRef][PubMed]
    [Google Scholar]
  19. Lovley D. R., Phillips E. J. P.. ( 1988;). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. . Appl Environ Microbiol 54:, 1472–1480.[PubMed]
    [Google Scholar]
  20. Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips F. J. P., Woodward J. C.. ( 1996;). Humic substances as electron acceptors for microbial respiration. . Nature 382:, 445–448. [CrossRef]
    [Google Scholar]
  21. Marusina A., Boulygina E., Kuznetsov B., Tourova T., Kravchenko I., Gal'chenko V.. ( 2001;). A system of oligonucleotide primers for the amplification of nifH genes of different taxonomic groups of prokaryotes. . Microbiology 70:, 73–78. [CrossRef]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  23. Okon Y.. ( 1985;). Azospirillum as a potential inoculant for agriculture. . Trends Biotechnol 3:, 223–228. [CrossRef]
    [Google Scholar]
  24. Peng G. X., Wang H. R., Zhang G. X., Hou W., Liu Y., Wang E. T., Tan Z. Y.. ( 2006;). Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. . Int J Syst Evol Microbiol 56:, 1263–1271. [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. , MIDI Technical Note 101. Newark, DE:: MIDI Inc.;
  27. Schlegel H. G., Lafferty R., Krauss I.. ( 1970;). The isolation of mutants not accumulating poly-β-hydroxybutyric acid. . Arch Mikrobiol 71:, 283–294. [CrossRef][PubMed]
    [Google Scholar]
  28. Straub K. L., Kappler A., Schink B.. ( 2005;). Enrichment and isolation of ferric-iron- and humic-acid-reducing bacteria. . Methods Enzymol 397:, 58–77. [CrossRef][PubMed]
    [Google Scholar]
  29. Tamaoka J., Katayamafujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high-performance liquid-chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  30. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetic analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  31. Tarrand J. J., Krieg N. R., Döbereiner J.. ( 1978;). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov.. Can J Microbiol 24:, 967–980. [CrossRef][PubMed]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  34. Wu C. Y., Zhuang L., Zhou S. G., Li F. B., He J.. ( 2011;). Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. . Int J Syst Evol Microbiol 61:, 882–887. [CrossRef][PubMed]
    [Google Scholar]
  35. Xie C. H., Yokota A.. ( 2004;). Phylogenetic analyses of the nitrogen-fixing genus Derxia. . J Gen Appl Microbiol 50:, 129–135. [CrossRef][PubMed]
    [Google Scholar]
  36. Xie C. H., Yokota A.. ( 2005;). Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. . Int J Syst Evol Microbiol 55:, 1435–1438. [CrossRef][PubMed]
    [Google Scholar]
  37. Zhang L., Wang Y., Dai J., Tang Y. L., Yang Q., Luo X. S., Fang C. X.. ( 2009;). Bacillus korlensis sp. nov., a moderately halotolerant bacterium isolated from a sand soil sample in China. . Int J Syst Evol Microbiol 59:, 1787–1792. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.046813-0
Loading
/content/journal/ijsem/10.1099/ijs.0.046813-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error