1887

Abstract

A Gram-stain-negative, aerobic, motile, rod-shaped bacterium, strain SC13E-S71, was isolated from tuff, volcanic rock, where the Roman catacombs of Saint Callixtus in Rome, Italy, was excavated. Analysis of 16S rRNA gene sequences revealed that strain SC13E-S71 belongs to the genus , and that it shows the greatest sequence similarity with DSM 14889 (98.72 %), DSM 15583 (98.65 %), LMG 23390 (98.16 %), KCTC 12580 (98.09 %), DSM 13593 (98.09 %), DSM 14551 (98.09 %), DSM 22271 (98.02 %), KCTC 12209 (97.73 %), KACC 10927 (97.49 %), DSM 24316 (97.37 %) and KCTC 22112 (97.09 %). The predominant fatty acids were Cω7, summed feature 3 (iso-C 2-OH and/or Cω7), C 2-OH and C. The predominant menaquinone was MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. These chemotaxonomic data are common to members of the genus . However, a polyphasic approach using physiological tests, DNA base ratios, DNA–DNA hybridization and 16S rRNA gene sequence comparisons showed that the isolate SC13E-S71 belongs to a novel species within the genus , for which the name sp. nov. is proposed. The type strain is SC13E-S71 ( = DSM 25229 = CECT 8016).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.046573-0
2013-07-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2565.html?itemId=/content/journal/ijsem/10.1099/ijs.0.046573-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Baik K. S. , Choe H. N. , Park S. C. , Hwang Y. M. , Kim E. M. , Park C. , Seong C. N. . ( 2013; ). Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., isolated from wetland freshwater, and emended description of the genus Sphingopyxis . . Int J Syst Evol Microbiol 63:, 1297–1303. [CrossRef] [PubMed]
    [Google Scholar]
  3. Choi J. H. , Kim M. S. , Jung M. J. , Roh S. W. , Shin K. S. , Bae J. W. . ( 2010; ). Sphingopyxis soli sp. nov., isolated from landfill soil. . Int J Syst Evol Microbiol 60:, 1682–1686. [CrossRef] [PubMed]
    [Google Scholar]
  4. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  5. Galtier N. , Gouy M. , Gautier C. . ( 1996; ). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. . Comput Appl Biosci 12:, 543–548.[PubMed]
    [Google Scholar]
  6. Godoy F. , Vancanneyt M. , Martínez M. , Steinbüchel A. , Swings J. , Rehm B. H. A. . ( 2003; ). Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov.. Int J Syst Evol Microbiol 53:, 473–477. [CrossRef] [PubMed]
    [Google Scholar]
  7. Halebian S. , Harris B. , Finegold S. M. , Rolfe R. D. . ( 1981; ). Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. . J Clin Microbiol 13:, 444–448.[PubMed]
    [Google Scholar]
  8. Jones K. L. . ( 1949; ). Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. . J Bacteriol 57:, 141–145.[PubMed]
    [Google Scholar]
  9. Jurado V. , Groth I. , Gonzalez J. M. , Laiz L. , Saiz-Jimenez C. . ( 2005a; ). Agromyces salentinus sp. nov. and Agromyces neolithicus sp. nov. . Int J Syst Evol Microbiol 55:, 153–157. [CrossRef] [PubMed]
    [Google Scholar]
  10. Jurado V. , Groth I. , Gonzalez J. M. , Laiz L. , Saiz-Jimenez C. . ( 2005b; ). Agromyces subbeticus sp. nov., isolated from a cave in southern Spain. . Int J Syst Evol Microbiol 55:, 1897–1901. [CrossRef] [PubMed]
    [Google Scholar]
  11. Jurado V. , Kroppenstedt R. M. , Saiz-Jimenez C. , Klenk H.-P. , Mouniée D. , Laiz L. , Couble A. , Pötter G. , Boiron P. , Rodríguez-Nava V. . ( 2009; ). Hoyosella altamirensis gen. nov., sp. nov., a new member of the order Actinomycetales isolated from a cave biofilm. . Int J Syst Evol Microbiol 59:, 3105–3110. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kämpfer P. , Witzenberger R. , Denner E. B. M. , Busse H. J. , Neef A. . ( 2002; ). Sphingopyxis witflariensis sp. nov., isolated from activated sludge. . Int J Syst Evol Microbiol 52:, 2029–2034. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kim M. K. , Im Y. M. , Ohta H. , Lee M. , Lee S. T. . ( 2005; ). Sphingopyxis granuli sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no. 142. . Int J Syst Evol Microbiol 2011:, 2563–2565.
    [Google Scholar]
  14. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , Yi H. , Won S. , Chun J. . ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kluge A. G. , Farris F. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  16. Laiz L. , Miller A. Z. , Jurado V. , Akatova E. , Sanchez-Moral S. , Gonzalez J. M. , Dionísio A. , Macedo M. F. , Saiz-Jimenez C. . ( 2009; ). Isolation of five Rubrobacter strains from biodeteriorated monuments. . Naturwissenschaften 96:, 71–79. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lee J. S. , Shin Y. K. , Yoon J. H. , Takeuchi M. , Pyun Y. R. , Park Y. H. . ( 2001; ). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. . Int J Syst Evol Microbiol 51:, 1491–1498.[PubMed]
    [Google Scholar]
  18. Lee H. W. , Ten I. L. , Jung H. M. , Liu Q. M. , Im W. T. , Lee S. T. . ( 2008a; ). Sphingopyxis panaciterrae sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no. 142. . Int J Syst Evol Microbiol 2011:, 2563–2565.
    [Google Scholar]
  19. Lee M. , Ten L. N. , Lee H. W. , Oh H. W. , Im W. T. , Lee S. T. . ( 2008b; ). Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 58:, 2342–2347. [CrossRef] [PubMed]
    [Google Scholar]
  20. Pal R. , Bhasin V. K. , Lal R. . ( 2006; ). Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. . Int J Syst Evol Microbiol 56:, 667–670. [CrossRef] [PubMed]
    [Google Scholar]
  21. Pedrol N. , Tiburcio A. F. . ( 2001; ). Polyamines determination by TLC and HPLC. . In: Handbook of Plant Ecophysiology Techniques, pp. 335–363. Edited by Reigosa M. J. . . Dordrecht, The Netherlands:: Kluwer Academic Publishers;.
    [Google Scholar]
  22. Rosselló-Mora , Amann . ( 2001; ). The prokaryotes. FEMS Microbiol. . Rev 25 235:, 39–67.[PubMed]
    [Google Scholar]
  23. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Sharma P. , Verma M. , Bala K. , Nigam A. , Lal R. . ( 2010; ). Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. . Int J Syst Evol Microbiol 60:, 780–784. [CrossRef] [PubMed]
    [Google Scholar]
  25. Srinivasan S. , Kim M. K. , Sathiyaraj G. , Veena V. , Mahalakshmi M. , Kalaiselvi S. , Kim Y. J. , Yang D. C. . ( 2010; ). Sphingopyxis panaciterrulae sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 60:, 2358–2363. [CrossRef] [PubMed]
    [Google Scholar]
  26. Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. D. , Kämpfer P. , Maiden M. C. J. , Nesme X. , Rosselló-Mora R. , Swings J. . & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  27. Takeuchi M. , Kawai F. , Shimada Y. , Yokota A. . ( 1993; ). Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov., and Sphingomonas terrae sp. nov.. Syst Appl Microbiol 16:, 227–238. [CrossRef]
    [Google Scholar]
  28. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  29. Tambalo D. D. , Del Bel K. L. , Bustard D. E. , Greenwood P. R. , Steedman A. E. , Hynes M. F. . ( 2010; ). Regulation of flagellar, motility and chemotaxis genes in Rhizobium leguminosarum by the VisN/R-Rem cascade. . Microbiology 156:, 1673–1685. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  32. Urdiain M. , López-López A. , Gonzalo C. , Busse H.-J. , Langer S. , Kämpfer P. , Rosselló-Móra R. . ( 2008; ). Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense. . Syst Appl Microbiol 31:, 339–351. [CrossRef] [PubMed]
    [Google Scholar]
  33. Vancanneyt M. , Schut F. , Snauwaert C. , Goris J. , Swings J. , Gottschal J. C. . ( 2001; ). Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. . Int J Syst Evol Microbiol 51:, 73–79.[PubMed]
    [Google Scholar]
  34. Yoon J. H. , Lee C. H. , Yeo S. H. , Oh T. K. . ( 2005; ). Sphingopyxis baekryungensis sp. nov., an orange-pigmented bacterium isolated from sea water of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 55:, 1223–1227. [CrossRef] [PubMed]
    [Google Scholar]
  35. Zhang D. C. , Liu H. C. , Xin Y. H. , Zhou Y. G. , Schinner F. , Margesin R. . ( 2010; ). Sphingopyxis bauzanensis sp. nov., a psychrophilic bacterium isolated from soil. . Int J Syst Evol Microbiol 60:, 2618–2622. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.046573-0
Loading
/content/journal/ijsem/10.1099/ijs.0.046573-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error