1887

Abstract

Two strains (JA643 and JA755) of Gram-stain-negative, facultatively anaerobic phototrophic, bacteria capable of growth at low temperatures (10–15 °C) were isolated from freshwater streams from different geographical regions of India. Both strains contain bacteriochlorophyll and carotenoids of the spirilloxanthin series. Phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid (PL), unidentified amino lipids (AL1–AL6, AL9) and an unidentified lipid (L1) were the polar lipids present in both strains. The major cellular fatty acid was Cω7 (76–79 % of the total). Bacteriohopane derivatives (BHD1,2), unidentified hopanoids (UH1–5), diplopterol (DPL) and diploptene (DPE) were the major hopanoids of both strains. The DNA G+C content was 64.2–64.5 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed that both strains are closely related to the genus and clustered with DSM 162 (99 % sequence similarity). However, both strains exhibited only 46.1 % DNA–DNA hybridization with DSM 162. Strains JA643 and JA755 shared >99 % 16S rRNA gene sequence similarity and were >85 % related on the basis of DNA–DNA hybridization; they are therefore considered to represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is JA643 ( = KCTC 15219 = NBRC 109057).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.046409-0
2013-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2684.html?itemId=/content/journal/ijsem/10.1099/ijs.0.046409-0&mimeType=html&fmt=ahah

References

  1. Arunasri K., Ramana V. V., Spröer C., Sasikala Ch., Ramana Ch. V.. ( 2008;). Rhodobacter megalophilus sp. nov., a phototroph from the Indian Himalayas possessing a wide temperature range for growth. . Int J Syst Evol Microbiol 58:, 1792–1796. [CrossRef][PubMed]
    [Google Scholar]
  2. Britton G., Liaaen-Jensen S., Pfander H.. ( 2004;). Carotenoids with a C40 skeleton (b) Hydroxycarotenoids. . In Carotenoids Handbook, Main List: 93, 95. Edited by Britton G., Liaaen-Jensen S., Pfander H... Berlin:: Birkhauser;. [CrossRef]
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  4. Duchow E., Douglas H. C.. ( 1949;). Rhodomicrobium vannielii, a new photoheterotrophic bacterium. . J Bacteriol 58:, 409–416.[PubMed]
    [Google Scholar]
  5. Hanada S., Hiraishi A., Shimada K., Matsuura K.. ( 1995;). Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. . Int J Syst Bacteriol 45:, 676–681. [CrossRef][PubMed]
    [Google Scholar]
  6. Hiraishi A., Hoshino Y.. ( 1984;). Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. . J Gen Appl Microbiol 30:, 435–448. [CrossRef]
    [Google Scholar]
  7. Hiraishi A., Hoshino Y., Kitamura H.. ( 1984;). Isoprenoid quinone composition in the classification of Rhodospirillaceae. . J Gen Appl Microbiol 30:, 197–210. [CrossRef]
    [Google Scholar]
  8. Imhoff J. F.. ( 1984;). Quinones of phototrophic purple bacteria. . FEMS Microbiol Lett 25:, 85–89. [CrossRef]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Kumar P. A., Jyothsna T. S., Srinivas T. N. R., Sasikala Ch., Ramana Ch. V., Imhoff J. F.. ( 2007;). Marichromatium bheemlicum sp. nov., a non-diazotrophic, photosynthetic gammaproteobacterium from a marine aquaculture pond. . Int J Syst Evol Microbiol 57:, 1261–1265. [CrossRef][PubMed]
    [Google Scholar]
  12. Lakshmi K. V. N. S., Sasikala Ch., Ashok Kumar G. V., Chandrasekaran R., Ramana Ch. V.. ( 2011a;). Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. . Int J Syst Evol Microbiol 61:, 828–833. [CrossRef][PubMed]
    [Google Scholar]
  13. Lakshmi K. V. N. S., Sasikala Ch., Takaichi S., Ramana Ch. V.. ( 2011b;). Phaeospirillum oryzae sp. nov., a spheroplast-forming, phototrophic alphaproteobacterium from a paddy soil. . Int J Syst Evol Microbiol 61:, 1656–1661. [CrossRef][PubMed]
    [Google Scholar]
  14. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  15. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  16. Mashego M. R., Rumbold K., De Mey M., Vandamme E., Soetaert W., Heijnen J. J.. ( 2007;). Microbial metabolomics: past, present and future methodologies. . Biotechnol Lett 29:, 1–16. [CrossRef][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  18. Ramana Ch. V., Sasikala Ch., Arunasri K., Anil Kumar P., Srinivas T. N., Shivaji S., Gupta P., Süling J., Imhoff J. F.. ( 2006;). Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbon-degrading purple betaproteobacterium. . Int J Syst Evol Microbiol 56:, 2157–2164. [CrossRef][PubMed]
    [Google Scholar]
  19. Ramana V. V., Chakravarthy S. K., Raj P. S., Kumar B. V., Shobha E., Ramaprasad E. V., Sasikala Ch., Ramana Ch. V.. ( 2012;). Descriptions of Rhodopseudomonas parapalustris sp. nov., Rhodopseudomonas harwoodiae sp. nov. and Rhodopseudomonas pseudopalustris sp. nov., and emended description of Rhodopseudomonas palustris. . Int J Syst Evol Microbiol 62:, 1790–1798. [CrossRef][PubMed]
    [Google Scholar]
  20. Rohmer M., Bouvier-Nave P., Ourisson G.. ( 1984;). Distribution of hopanoid triterpenes in prokaryotes. . J Gen Microbiol 130:, 1137–1150.
    [Google Scholar]
  21. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  22. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans and other nitrogen-fixing Bacillus strains. . Int J Syst Bacteriol 35:, 151–154. [CrossRef]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characteristics. . In Methods for General and Molecular Biology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Srinivas T. N. R., Kumar P. A., Sasikala Ch., Ramana Ch. V., Imhoff J. F.. ( 2007;). Rhodobium gokarnense sp. nov., a novel phototrophic alphaproteobacterium from a saltern. . Int J Syst Evol Microbiol 57:, 932–935. [CrossRef][PubMed]
    [Google Scholar]
  25. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 3:, 152–155.
    [Google Scholar]
  26. Stackebrandt E., Goebel B. M.. ( 1994;). A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  27. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S.. ( 2001;). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov.. Int J Syst Evol Microbiol 51:, 1639–1652. [CrossRef][PubMed]
    [Google Scholar]
  28. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  29. Tourova T. P., Antonov A. S.. ( 1988;). Identification of microorganisms by rapid DNA-DNA hybridization. . Methods Microbiol 19:, 333–355. [CrossRef]
    [Google Scholar]
  30. Trüper H. G., Pfennig N.. ( 1981;). Isolation of members of the families Chromatiaceae and Chlorobiaceae. . In The Prokaryotes: a Handbook on Habitats, Isolation and Identification of Bacteria, pp. 279–289. Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G... Berlin:: Springer;.
    [Google Scholar]
  31. Whittenbury R., Dow C. S.. ( 1977;). Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. . Bacteriol Rev 41:, 754–808.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.046409-0
Loading
/content/journal/ijsem/10.1099/ijs.0.046409-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error