1887

Abstract

Two aerobic, Gram-stain-negative, pale-red-pigmented and rod-shaped bacterial strains, designated SAORIC-26 and SAORIC-28, were isolated from seawater (3000 m depth) from the Pacific Ocean. Phylogenetic analysis based on their 16S rRNA gene sequences revealed that the novel isolates could be affiliated with the family of the class Strains SAORIC-26 and SAORIC-28 shared 99.7 % pairwise sequence similarity with each other and showed less than 92.6 % similarity with other cultivated members of the class The strains were found to be non-motile, oxidase-positive, catalase-negative and able to hydrolyse gelatin and aesculin. The DNA G+C contents were determined to be 64.8–65.8 mol% and MK-7 was the predominant menaquinone. Summed feature 9 (iso-Cω9 and/or C 10-methyl), summed feature 3 (Cω6 and/or Cω7) and iso-C were found to be the major cellular fatty acids. On the basis of this taxonomic study using a polyphasic approach, it was concluded that strains SAORIC-26 and SAORIC-28 represent a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species of is SAORIC-28 ( = KCTC 23867 = NBRC 108816). An additional strain of the species is SAORIC-26.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.046318-0
2013-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2229.html?itemId=/content/journal/ijsem/10.1099/ijs.0.046318-0&mimeType=html&fmt=ahah

References

  1. Alfredsson G. A., Kristjansson J. K., Hjorleifsdottir S., Stetter K. O.. ( 1988;). Rhodothermus marinus gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. . J Gen Microbiol 134:, 299–306.
    [Google Scholar]
  2. Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R., Rosselló-Mora R.. ( 2002;). Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. . Int J Syst Evol Microbiol 52:, 485–491.[PubMed]
    [Google Scholar]
  3. Dittmer J. C., Lester R. L.. ( 1964;). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. . J Lipid Res 15:, 126–127.[PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  8. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  9. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol. 19:, 161–207. [CrossRef]
    [Google Scholar]
  10. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–147. Edited by Stackebrandt E., Goodfellow M... New York:: John Wiley and Sons;.
    [Google Scholar]
  11. Ludwig W., Euzeby J., Whitman W. B.. ( 2011;). Family I. Rhodothermaceae fam. nov. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, p. 457. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  12. Makhdoumi-Kakhki A., Amoozegar M. A., Ventosa A.. ( 2012;). Salinibacter iranicus sp. nov. and Salinibacter luteus sp. nov., isolated from a salt lake, and emended descriptions of the genus Salinibacter and of Salinibacter ruber. . Int J Syst Evol Microbiol 62:, 1521–1527. [CrossRef][PubMed]
    [Google Scholar]
  13. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  16. Murray R. G. E., Doetsch R. N., Robinow F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Park S., Yoshizawa S., Kogure K., Yokota A.. ( 2011;). Rubricoccus marinus gen. nov., sp. nov., of the family ‘Rhodothermaceae’, isolated from seawater. . Int J Syst Evol Microbiol 61:, 2069–2072. [CrossRef][PubMed]
    [Google Scholar]
  18. Perry L. B.. ( 1973;). Gliding motility in some non-spreading flexibacteria. . J Appl Bacteriol 36:, 227–232. [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y.. ( 1996;). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. . Int J Syst Bacteriol 46:, 1099–1104. [CrossRef][PubMed]
    [Google Scholar]
  21. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  22. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  24. Vaisman N., Oren A.. ( 2009;). Salisaeta longa gen. nov., sp. nov., a red, halophilic member of the Bacteroidetes.. Int J Syst Evol Microbiol 59:, 2571–2574. [CrossRef][PubMed]
    [Google Scholar]
  25. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  26. Worliczek H. L., Kämpfer P., Rosengarten R., Tindall B. J., Busse H. J.. ( 2007;). Polar lipid and fatty acid profiles–re-vitalizing old approaches as a modern tool for the classification of Mycoplasmas?. Syst Appl Microbiol 30:, 355–370. [CrossRef][PubMed]
    [Google Scholar]
  27. Xie C. H., Yokota A.. ( 2003;). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. . J Gen Appl Microbiol 49:, 345–349. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.046318-0
Loading
/content/journal/ijsem/10.1099/ijs.0.046318-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error