1887

Abstract

A Gram-stain-negative, non-spore-forming, strictly aerobic, non-flagellated, non-gliding, rod-shaped bacterial strain, designated SMS-12, was isolated from marine sand in a firth on the western coast of South Korea. Strain SMS-12 grew optimally at 25 °C, at pH 7.0–7.5 and in the absence of NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain SMS-12 fell within the clade comprising species of the genus , forming a coherent cluster with the type strain of , with which it exhibited the highest 16S rRNA gene sequence similarity value of 97.5 %. Levels of sequence similarity to the type strains of the other species of the genus and the other species used in the phylogenetic analysis were 93.3–96.4 % and <91.5 %, respectively. Strain SMS-12 contained MK-7 as the predominant menaquinone, and summed feature 3 (Cω7 and/or iso-C 2-OH), iso-C and iso-C 3-OH as the major fatty acids. The major polar lipids were phosphatidylethanolamine and one unidentified aminophospholipid; sphingolipids were present. The DNA G+C content was 41.8 mol% and the mean DNA–DNA relatedness with KACC 14978 was 13 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain SMS-12 is separate from other species of the genus . On the basis of the data presented, strain SMS-12 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SMS-12 ( = KCTC 32111 = CCUG 62214).

Funding
This study was supported by the:
  • , Program for Collection, Management and Utilization of Biological Resources , (Award 11-2008-00-002-00)
  • , Ministry of Education, Science and Technology (MEST)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.045989-0
2013-08-01
2020-11-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/2865.html?itemId=/content/journal/ijsem/10.1099/ijs.0.045989-0&mimeType=html&fmt=ahah

References

  1. An D.-S., Yin C.-R., Lee S.-T., Cho C.-H. ( 2009 ). Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. . Int J Syst Evol Microbiol 59, 11221125. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baik K. S., Park S. C., Kim E. M., Lim C. H., Seong C. N. ( 2010 ). Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter . . Int J Syst Evol Microbiol 60, 134139. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002 ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52, 10491070. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bowman J. P. ( 2000 ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50, 18611868.[PubMed]
    [Google Scholar]
  5. Cowan S. T., Steel K. J. ( 1965 ). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  6. Cui C.-H., Choi T.-E., Yu H., Jin F., Lee S.-T., Kim S.-C., Im W.-T. ( 2011a ). Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. . J Microbiol 49, 393398. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cui C.-H., Choi T.-E., Yu H., Jin F., Lee S.-T., Kim S.-C., Im W.-T. ( 2011b ). Mucilaginibacter composti sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List no. 142. . Int J Syst Evol Microbiol 61, 25632565. [CrossRef]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [CrossRef]
    [Google Scholar]
  9. Han S.-I., Lee H.-J., Lee H.-R., Kim K.-K., Whang K.-S. ( 2012 ). Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis . . Int J Syst Evol Microbiol 62, 632637. [CrossRef] [PubMed]
    [Google Scholar]
  10. Jeon Y., Lee S.-S., Chung B. S., Kim J. M., Bae J.-W., Park S. K., Jeon C. O. ( 2009 ). Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. . Int J Syst Evol Microbiol 59, 14511454. [CrossRef] [PubMed]
    [Google Scholar]
  11. Jiang F., Dai J., Wang Y., Xue X., Xu M., Guo Y., Li W., Fang C., Peng F. ( 2012 ). Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. . Int J Syst Evol Microbiol 62, 16301635. [CrossRef] [PubMed]
    [Google Scholar]
  12. Joung Y., Joh K. ( 2011 ). Mucilaginibacter myungsuensis sp. nov., isolated from a mesotrophic artificial lake. . Int J Syst Evol Microbiol 61, 15061510. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kang S.-J., Jung Y.-T., Oh K.-H., Oh T.-K., Yoon J.-H. ( 2011 ). Mucilaginibacter boryungensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61, 15491553. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim B.-C., Lee K. H., Kim M. N., Lee J., Shin K.-S. ( 2010 ). Mucilaginibacter dorajii sp. nov., isolated from the rhizosphere of Platycodon grandiflorum . . FEMS Microbiol Lett 309, 130135.[PubMed]
    [Google Scholar]
  15. Kim B.-C., Lee K. H., Kim M. N., Lee J., Shin K.-S. ( 2011 ). Mucilaginibacter dorajii sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List no. 133. . Int J Syst Evol Microbiol 61, 13. [CrossRef]
    [Google Scholar]
  16. Kim B.-C., Poo H., Lee K. H., Kim M. N., Kwon O.-Y., Shin K.-S. ( 2012a ). Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. . Int J Syst Evol Microbiol 62, 5560. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim J.-H., Kang S.-J., Jung Y.-T., Oh T.-K., Yoon J.-H. ( 2012b ). Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 62, 515519. [CrossRef] [PubMed]
    [Google Scholar]
  18. Komagata K., Suzuki K.-I. ( 1987 ). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19, 161207. [CrossRef]
    [Google Scholar]
  19. Lányí B. ( 1987 ). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19, 167. [CrossRef]
    [Google Scholar]
  20. Luo X., Zhang L., Dai J., Liu M., Zhang K., An H., Fang C. ( 2009 ). Mucilaginibacter ximonensis sp. nov., isolated from Tibetan soil. . Int J Syst Evol Microbiol 59, 14471450. [CrossRef] [PubMed]
    [Google Scholar]
  21. Madhaiyan M., Poonguzhali S., Lee J.-S., Senthilkumar M., Lee K. C., Sundaram S. ( 2010 ). Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. . Int J Syst Evol Microbiol 60, 24512457. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mahasneh A. M., Stewart D. J. ( 1980 ). A medium for detecting β-(1→3) glucanase activity in bacteria. . J Appl Microbiol 48, 457458. [CrossRef]
    [Google Scholar]
  23. Männistö M. K., Tiirola M., McConnell J., Häggblom M. M. ( 2010 ). Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. . Int J Syst Evol Microbiol 60, 28492856. [CrossRef] [PubMed]
    [Google Scholar]
  24. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. ( 1977 ). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27, 104117. [CrossRef]
    [Google Scholar]
  25. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [CrossRef]
    [Google Scholar]
  26. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N. ( 2007 ). Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. . Int J Syst Evol Microbiol 57, 23492354. [CrossRef] [PubMed]
    [Google Scholar]
  27. Reichenbach H. ( 1992 ). The order Cytophagales . . In The Prokaryotes, , 2nd edn., vol. 4, pp. 36313675. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. . New York:: Springer;. [CrossRef]
    [Google Scholar]
  28. Rodriguez-Kabana R., Godoy G., Morgan-Jones G., Shelby R. A. ( 1983 ). The determination of soil chitinase activity: conditions for assay and ecological studies. . Plant Soil 75, 95106. [CrossRef]
    [Google Scholar]
  29. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  30. Stackebrandt E., Goebel B. M. ( 1994 ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [CrossRef]
    [Google Scholar]
  31. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [CrossRef]
    [Google Scholar]
  32. Urai M., Aizawa T., Nakagawa Y., Nakajima M., Sunairi M. ( 2008 ). Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. . Int J Syst Evol Microbiol 58, 20462050. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [CrossRef]
    [Google Scholar]
  34. Yano I., Tomiyasu I., Yabuuchi E. ( 1982 ). Long chain base composition of strains of three species of Sphingobacterium gen. nov.. FEMS Microbiol Lett 15, 303307. [CrossRef]
    [Google Scholar]
  35. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. ( 1996 ). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. . Int J Syst Bacteriol 46, 502505. [CrossRef]
    [Google Scholar]
  36. Yoon J.-H., Lee S. T., Park Y.-H. ( 1998 ). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. . Int J Syst Bacteriol 48, 187194. [CrossRef] [PubMed]
    [Google Scholar]
  37. Yoon J.-H., Kim I.-G., Shin D.-Y., Kang K. H., Park Y.-H. ( 2003 ). Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. . Int J Syst Evol Microbiol 53, 5357. [CrossRef] [PubMed]
    [Google Scholar]
  38. Yoon J.-H., Kang S.-J., Park S., Oh T.-K. ( 2012 ). Mucilaginibacter litoreus sp. nov., isolated from marine sand. . Int J Syst Evol Microbiol 62, 28222827. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.045989-0
Loading
/content/journal/ijsem/10.1099/ijs.0.045989-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error